Structure and Composition of Atlantic Forest Fragments Inhabited by *Callicebus coimbrai* in Northeastern Brazil: Subsidies for Landscape Management Strategies

José Paulo Santana¹, Paloma Marques Santos²,³, Eduardo Marques², Leandro Jerusalinsky⁴, Stephen Francis Ferrari⁴,⁵ & Raone Beirão-Mendes⁴,⁵

ABSTRACT – Characterizing the *habitat* structure, identifying the functionality of tree species is an important strategy to assist in management programs. This study aimed to characterize the *habitat*’s structure, identify the ecological composition and the type of tree dispersion syndrome in fragments inhabited by the threatened *Callicebus coimbrai* in the Sergipe Atlantic Forest. A total of eight transects were covered by the errant quadrant method, with 780 points recorded in 3,166.71 m. At each point, we collected the DBH, height, the distance between two points (trees), in addition to the identification of the tree species. We analyzed abundance, density, frequency, basal dominance, Importance Value Index, in addition to the calculation of the Pielou diversity and Equitability index. The average distance between the sampled points (trees) was 4.05±2.75 m, the mean tree height was 11.69±3.10 m, and the mean DBH was 25.75±13.53 cm, with few significant differences between the fragments. In general, the structures are unstable, and the composition of the trees is formed mainly by early pioneer and secondary species and species with zoochoric dispersion syndrome. These places possess an unstable structure for titi monkeys to inhabit. Besides, they are distant from other places, making it difficult for individuals to move. These results show the importance of characterizing the structure, using the ecological traces of trees to measure *habitat* quality, and assisting management programs to preserve and conserve threatened species and their *habitat*.

Keywords: Pitheciidae; *Callicebus*; tree succession; phytosociology; diversity.

Recebido em 27/11/2020 – Aceito em 03/02/2021

Received in 27/11/2020 – Accepted on 03/02/2021

1 Programa de Pós-graduação em Desenvolvimento e Meio Ambiente, Universidade Federal de Sergipe, São Cristóvão, Brasil.
<psantana.santo@gmail.com>

2 Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio/CPB, Cabedelo, Brasil. <paloma.marquesantos@gmail.com, eduardo.santos@icmbio.gov.br, leandro.jerusalinsky@icmbio.gov.br>

3 Instituto de Pesquisa e Conservação de Tamarinduás no Brasil, Conjunto Porto das Barcas, sala 130, Parnaíba, 64207-750, PI, Brasil. <paloma.marquesantos@gmail.com>

4 Laboratório de Biologia da Conservação, Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão, Brasil. <ferrari@pq.cnpq.br, raonebm@yahoo.com.br>

5 Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Sergipe, São Cristóvão, Brasil. <ferrari@pq.cnpq.br, raonebm@yahoo.com.br>
Esses locais apresentam uma estrutura instável para os macacos guigós habitar. Além disso, estão distantes de outros locais, dificultando a movimentação dos indivíduos. Esses resultados mostram a importância de caracterizar a estrutura, utilizar os traços ecológicos das árvores como medida da qualidade do habitat, auxiliando programas de manejo que visem a preservação e conservação de espécies ameaçadas e seus habitat.

Palavras-chave: Pitheciidae; *Callicebus*; sucessão de árvores; fitossociologia; diversidade.

Estructura y Composición de los Fragmentos de Mata Atlántica Habitados por *Callicebus coimbrai* en el Noreste de Brasil: Subsidios para Estrategias de Gestión del Paisaje

RESUMEN – Caracterizar la estructura del habitat, identificar la funcionalidad de las especies arbóreas es una estrategia importante para ayudar en los programas de manejo. Este estudio tuvo como objetivo caracterizar la estructura del habitat, identificar la composición ecológica y el tipo de síndrome de dispersión de árboles en fragmentos del Mata Atlántica, Sergipe, habitados por el *Callicebus coimbrai*, en peligro de extinción. Se atravesaron ocho transectos utilizando el método de cuadrante errante, con 780 puntos registrados en 3.166,71 m atravesados. En cada punto, recolectamos DAP, altura, distancia entre dos puntos (árboles), además de la identificación de la especie arbórea. Analizamos abundancia, densidad, frecuencia, dominancia basal, índice de valor de importancia, además de calcular el índice de diversidad y equidad de Pielou. La distancia promedio entre los árboles fue de 4.05 ± 2.75 m, la altura promedio fue de 11.69 ± 3.10 m, y el DAP promedio fue de 25.75 ± 13.53 cm, con pocas diferencias significativas entre los fragmentos. En general las estructuras son deficientes y la composición de los árboles está formada principalmente por especies iniciales – pioneras y secundarias – y especies con síndrome de dispersión zoocórica. Estos lugares presentan una estructura inestable para que habiten los monos guigo. Además, están lejos de otros lugares, lo que dificulta la movilidad de las personas. Estos resultados muestran la importancia de caracterizar la estructura, utilizando los rasgos ecológicos de los árboles como medida de la calidad del hábitat, ayudando a los programas de manejo orientados a la preservación y conservación de las especies amenazadas y sus habitat.

Palabras clave: Pitheciidae; *Callicebus*; sucesión de árboles; fitossociología; diversidad.

Introduction

Natural landscapes currently undergo severe transformations in their structure and distribution, mainly due to anthropic disturbance (Fahrig, 2003; Haddad et al., 2015). Habitat loss seriously threatens biodiversity conservation, mainly in tropical areas (Arroyo-Rodrígues & Mandujano, 2009; Melo et al., 2018). Most of the remaining natural areas consist of small fragments immersed in a non-habitat matrix, with strong edge effects (Magnago et al., 2015). Consequently, the forest composition and structure may suffer essential changes, with a decrease of large trees and an overall simplification of forest structure due to habitat isolation and subsequently edge effects (Rocha-Santos et al., 2016). This shifting in the habitat may have severe consequences on arboreal animal species, which depend almost exclusively on arboreal trees (Santos et al., 2016, 2019). Considering forest-dwelling species, such as Neotropical primates, the combination of those factors may be crucial to their diversity (Gouveia et al., 2014) and maintenance (Terboorgh, 1983; Kinzey, 1997).

Qualifying the vegetation structure and quantifying its representative portion in forest remnants, along with identifying its tree composition, are potent approaches to verify forest fragments’ quality and forest dynamics, identify possible territories to conserve, and support management programs (Felfili, 1997). Analyzing the physical structure of habitat through the Diameter values at Breast Height (DBH) or tree height, for example, along with phytosociological studies, such as tree’s species dominance and frequency, may assist in understanding forest dynamics and stability (Felfili & Rezende, 2003, Magnano et al., 2005; Williams-Limera, 2011; Gustafsson, 2016). The classical trade-off between DBH and tree height is widely recognized, a plant strategy to allocate resources to its vegetative growth (Iida et al., 2011; Sumida et al., 2013). In parallel, an area dominated by light-demanding trees may indicate a forest in the initial/second stage of succession or a forest with strong forest edge effects and disturbed (Felfili, 1997).
Another aspect to consider is the ecological species groups, which correspond to the type of succession that a species belongs to and share some crucial characteristics related to the habitat structure (Swaine & Whitmore, 1988; Kageyama & Castro, 1989; Lorenzi, 1992). Overall, there are two main groups – shade-intolerant and shade-tolerant (Swaine & Whitmore, 1988). The shade-intolerant (pioneer and early secondary) species exhibits a fast growth rate, a low wood density, and inhabits forest edges, gaps, and any forest in the initial stage of succession (Poorter et al., 2008; Wright et al., 2010; Gustafsson et al., 2016). The shade-tolerant species (late secondary and climax), on the other, have a low growth rate, a high wood density, needing shaded microhabitats in the first stages of its development, and thus, avoiding gaps and forest edges (King et al., 2006; Rozendaal et al., 2006; Gustafsson et al., 2016). This generic classification allows understanding the ecological succession, anthropogenic disturbances, and how the vegetation structure is within forests.

Finally, identifying and analyzing parameters such as dispersal syndromes may help understand habitat loss’s effects on the plant community. Dispersal syndrome consists of sets of fruit or seed traits related to dispersing agents (Pijl, 1982), and, in general aspects, it may be of three primary types: anemochory (dispersal by wind), autochory (dispersal by auto-dispersing mechanism), and zoochory (dispersal by animals). Overall, habitat loss has a strong influence on zoochory species, once hindering animal species – including important seed dispersers – movements in non-forest habitats (Howe & Smallwood, 1982; Domingues et al., 2013). The anemochory and autochory species are more likely to occur in open areas due to their dispersal facilities (Howe & Smallwood, 1982; Veira, 2002). Therefore, areas with low zoochory species rates may indicate a continued habitat loss process and an intense defaunation process (Redford, 1992; McConkey et al., 2012; Costa et al., 2014).

Primates are essential for the recruitment of zoochoric species (Stevenson, 2007; Bueno et al., 2013), acting directly on seed dispersal (Fuzessy et al., 2018), including the endangered Coimbra’s titi monkey (Callicebus coimbrai) Kobayashi & Langguth, 1999; Baião, 2013). This arboreal primate inhabits forest fragments exclusively from the Atlantic Forest of Bahia and Sergipe in the Brazilian northeastern (Jerusalinsky & Souza-Alves, 2015; Hilário et al., 2017). The species is endemic to the narrow strip between the Paraguacu River in Bahia, and the south of São Francisco River, in Sergipe (Printes, 2005; Jerusalinsky et al., 2006; Marques et al., 2013; Culot et al., 2018).

Like most biomes (Ribeiro et al., 2009; Rezende et al., 2018), this region has been devastated by deforestation, with few more than 10% of forest remnants (Santos et al., 2013; Marques et al., 2017). Sergipe state faces a similar situation, where federal, state, or private protected areas safeguard only 1.4% of its remaining forest cover (MMA, 2010). The Mata do Junco Wildlife Refuge and the Private Reserves of Natural Heritage (RPPN) Bom Jardim and Tapera are relatively recent prominent protected areas, established with the primary aim of protecting the local population of Callicebus coimbrai within others (Brasil, 2006; SEMARH, 2007). Agropastorial areas, such as sugar-cane and pasture, urban areas, and small ranches, dominate the local landscape, encompassing a range of forest fragments of different sizes and degrees of preservation. Some, but not all, hold titi monkeys’ populations (Marques et al., 2013).

According to Santos (2011), Callicebus coimbrai stands out for possessing a critical relationship between its occurrence and the habitat quality (floristic composition and habitat structure), probably to the species’ detriment ecological-structural needs, such as dependence on forested habitats to perform several daily activities. In Sergipe Atlantic Forest, a hotspot for the species occurrence, studies on aspects of its distribution associated with habitat structure and functional diversity of tree species are still scarce regarding their ecological groups and their dispersion syndromes (Beltrão-Mendes, 2010; Soares et al., 2011; Souza-Alves et al., 2014; Chagas & Ferrari, 2010; Souza-Alves et al., 2018).

Therefore, understanding the forest structure and composition is crucial for the species’ conservation. Given the potential of this area for titi monkeys conservation (Gouveia et al., 2017), the present study focused on characterizing the forest structure and verifying the composition, ecological groups, and dispersal syndrome in six forest remnants located within this landscape, on assisting in the development of management strategies for these areas. Additionally, we provide the first systematic data on the composition of the arboreal habitats within this area.
Methods

Study area

We focused the present study on six Atlantic Forest fragments located in two municipalities - Capela and Santa Luzia do Itanhy, North and South of Sergipe, respectively (Fig. 1). Three out of the six fragments are Protected areas: Mata do Junco Wildlife Refuge, RPPN Bom Jardim, and RPPN Tapera. The RPPN (an acronym for Private Reserve of Natural Heritage, in Portuguese) is a protected area of a private domain. The mean annual temperature is 24.8°C - with temperatures ranging from 18.4°C to 31.8°C – and the mean annual precipitation concentrate in May (Climate-data.org, 2020 a, b). The vegetation type consists of ombrophilous dense forest (IBGE, 2012), distributed in small and isolated fragments, surrounded by pastures and agriculture crops (Fig. 1).

We selected the fragments to sample representative habitats of the landscape, either with titi monkeys’ presence. We surveyed the six study sites between 2011 and 2016. Each fragment’s size and configuration influenced the differences in transect length and the number of sampling points at each site. In some cases, deposits of domestic waste, erosion, or burnt vegetation impeded progress.

Data sampling

We performed the wandering quarter method (Catana, 1963; Brower et al., 1997) in each site sampling. The method consists of choosing a peripheral starting point, then selecting a compass point, according to the fragment configuration - to ensure maximum transect length - and we identified the nearest tree within 45° of either side of this line. We collected the following data in each sampled point (tree): species identification (scientific or common name); the distance (m) between the two points (trees); the tree height; and its diameter at breast height (DBH ≥ 15cm of diameter, ≈ 45cm of circumference). Only the Mata do Junco Wildlife Refuge had six transects (the closest transects were brought together, totaling three sampling areas - T1+T2 = MJWR1, T3+T4 = MJWR2; T5+T6 = MJWR and the other areas had a transect/area proportion. We perform statistical analyses through the mean value for these variables. An expert local field assistant assists us in obtaining the common name of each species. We marked each tree and collected a sample for identification at the herbarium of the Universidade Federal de Sergipe (UFS), at São Cristóvão, Sergipe, Brazil.

Data analysis

Tree diversity, Habitat Structure, and Phytosociological analysis

Through the Shannon-Wiener diversity index and the Pielou’s Evenness Index (Oliveira & Amaral, 2004), we calculated the species richness and species evenness, respectively. The Pielou’s Evenness Index ranges from 0 to 1, wherein values close to 0 indicate less evenness, consequently, the presence of one, or few, dominant species (Margurran, 2004). Shannon-Wiener diversity’s values usually range from 1.5 to 3.5, rarely trespassing 4.0 (Margurran, 2004). Consequently, many statistics consider the index little representative, especially if we are comparing areas. In our case, we opted for the One-Way ANOVA test on RStudio 4.0.3 software (RStudio Team, 2020) to compare the sites, including the evenness to facilitate the results’ interpretation. For this analysis, we compare the Shannon-Wiener and Pielou’s Evenness values of three groups: MJWR, RPPN, and SLI.

To understand the grouping and spatial organization of tree species, we performed a Jaccard similarity index. The index is calculated using a matrix of presence (p = 1) and absence (p = 0) of
the species for each transect, using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), through the software Past 3.16 (Hammer et al., 2013).

We applied ANOVA to compare block designs (using transects as independent samples) according to their DBH, tree height, and distance between points. In statistical difference, we performed a pairwise comparison with the Kruskal-Wallis non-parametric test. We performed Pearson’s correlation analyses to identify possible correlations between DBH, tree height, and distance between points in each transect. We treated the DBH and tree height as the two dependent variables and the distance between points as the independent variables. We performed all statistical analyzes using the Past 3.16 application (Hammer et al., 2013).

Through a phytosociological methodology, we characterized the vegetation structure, analyzing the following main parameters: abundance, density (Relative Density – ReDe), frequency (Relative Frequency – ReFe), basal dominance (Relative Dominance - ReDo), and Importance Value Index (IVI) of each species per area (Felfili & Rezende, 2003). To estimate the volumetric parameters, such as basal area (g), referring to the sum of each individual’s diameters belonging to a species, equation 1, proposed by Scolforo et al. (2008).

Ecological groups and dispersal syndrome

We classified the identified species in one of four ecological groups, concerning the succession categories in nature – pioneer, early secondary (shade-intolerant or light-demanding), late secondary, or climax (shade-tolerant) – according to classification Swaine & Whitmore (1988) and Gandolfi et al. (1995).

Based on the morphological characteristics and the classification of the types of fruits (Barroso et al., 2004; Lorenzi et al., 2006), we categorized the tree species according to their dispersion syndromes (anemochory, autochory, and zoochory), based on Pijl (1982) and Santana et al. (2018).

Results

We covered 3,166.71m in all eight transects (MJWR = 1208.56m; Santa Luzia Itanhy = 1,958.15m), totaling 780 sampled points/trees (Table 1). Among these 780 sampled points, we identify the tree species of 645 points (83%), distributed in 47 species of 26 families (Table S.1).

Tree diversity, habitat structure, and Phytosociological analysis

Overall, the transects present similar tree diversity (F(2, 5) = 1,2418; p > 0.05) and evenness (F(2,5) = 1.1629; p > 0.05). Collectively, for both indexes, MJWR presented the highest values (Fig. 2A), while the RPPN group presented the lowest diversity and the SLI groups presented the lowest evenness (Fig. 2B). Nevertheless, all the sampled transects presented high evenness (Table S.2).

![Figure 2](image.png)

Figure 2 – Diversity (A) and Evenness (B) indexes from the three main groups used in one-way ANOVA tests. Vertical bars denote 0.95 confidence intervals. MJWR= Mata do Junco Wildlife Refuge; RPPN Bom Jardim= Reserva Particular do Patrimônio Natural Bom Jardim; RPPN Tapera= Reserva Particular do Patrimônio Natural Tapera; SLI= Santa Luzia Itanhy fragment.
Concerning the floristic composition, the clusters and subclusters reflect the sampled areas’ spatial location, which presented low similarity (Jaccard = 0.20). The MJWR and Santa Luzia Itanhy transects form two main clusters (Fig. 3). The transects MJWR2 and MJWR3 had the largest shares among themselves (Jaccard = 0.48), those considered closest (Fig. 3). In summary, the closest fragments/transects show a higher similarity (Fig. 3).

The average distance between the sampled points (trees) was 4.05±2.75m (Table S.3; Fig. 4A), the mean tree height was 11.69±3.10m (Table S.3; Fig. 4B), and the mean DBH was 25.75±13.53cm (Table S.3; Fig. 4C). MJWR transects had the majority of the three parameters’ highest values, mainly for DBH and Distance (Table A.3). Only one transect in the MJWR (MJWR3) presented a mean tree height > 12m (Table A.3). The ANOVA analysis attests to the differences between the transects in some analyzed parameters (p-value < 0.05). Concerning the DBH parameter, the Kruskal-Wallis non-parametric test highlights no significant differences between MJWR transects and RPPN Tapera, presenting the highest DBH (Fig. 4). Conversely, the RPPN Bom Jardim, SLI1, SLI2, and SLI3 had DBH differences (p-value < 0.05; Fig. 4). The tree height was different in all transects (p-value < 0.05), while the distance between points presented no significant differences (Fig. 4).

In the RPPN Bom Jardim, the tree height increases as the distance between points also increase (Pearson’s correlation = 0.222; p-value < 0.05), while in the MJWR transects, the highest the DBH, the highest the distance between the points (Pearson’s correlation = 0.121; p-value < 0.05).

The phytosociological analyzes describe different compositions related to the parameters of the analyzed forests. Considering the Importance Value Index (IVI) values for the 6 species with the highest values, the MJWR presented the species *Byrsonima sericea* as the most important, mainly for its high abundance and dominance. The second most important was *Simaba versicolor* for its high frequency and basal dominance, followed by *Boudichia virgilioidea*, *Tapiiria guianensis*, *Cecropia pachystachya*, and *Didymopanax morototoni*. For the fragments...
found in the south of the State, *Tapirira guianensis* is the most important for the region, dominating all parameters (abundance, frequency, and basal dominance). The second most important was *Protium heptaphyllum*, followed by *Himatanthus obovatus, Eschweilera ovata, Tachigali densiflora,* and *Ecclinusa ramiflora* (Table 1).

<p>| Table 1 – Species characterization based on phytosociological analysis (first 10 species with the highest IVI value), where: Abun = Abundance; Eco = Ecological Groups; Pio = pioneer; EaSe = Early Secondary; LaSe = Late Secondary; Disp = Dispersion syndromes; Ane = anemochory; Zoo = zoochory; ReDe = Relative Density; ReFe % = Relative Frequency; ReDo = Relative Dominance; IVI = Importance Value Index. |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Eco</th>
<th>Disp</th>
<th>Abun</th>
<th>ReDe (ha)</th>
<th>ReFe (%)</th>
<th>ReDo</th>
<th>IVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byrsonima sericea</td>
<td>EaSe</td>
<td>Zoo</td>
<td>35</td>
<td>145.83</td>
<td>1.79</td>
<td>13.03</td>
<td>9.18</td>
</tr>
<tr>
<td>Simaba versicolor</td>
<td>LaSe</td>
<td>Zoo</td>
<td>13</td>
<td>54.17</td>
<td>2.68</td>
<td>9.62</td>
<td>5.68</td>
</tr>
<tr>
<td>Boudichia virgilioioides</td>
<td>Pio</td>
<td>Ane</td>
<td>15</td>
<td>62.50</td>
<td>2.68</td>
<td>8.47</td>
<td>5.54</td>
</tr>
<tr>
<td>Tapirira guianensis</td>
<td>Pio</td>
<td>Zoo</td>
<td>16</td>
<td>66.67</td>
<td>2.68</td>
<td>6.00</td>
<td>4.83</td>
</tr>
<tr>
<td>Cecropia pachystachya</td>
<td>Pio</td>
<td>Zoo</td>
<td>8</td>
<td>33.33</td>
<td>0.89</td>
<td>9.59</td>
<td>4.46</td>
</tr>
<tr>
<td>Didymopanax morototoni</td>
<td>Pio</td>
<td>Zoo</td>
<td>15</td>
<td>62.50</td>
<td>2.68</td>
<td>4.80</td>
<td>4.31</td>
</tr>
<tr>
<td>Tapirira guianensis</td>
<td>Pio</td>
<td>Zoo</td>
<td>61</td>
<td>156.41</td>
<td>3.20</td>
<td>15.14</td>
<td>10.14</td>
</tr>
<tr>
<td>Protium heptaphyllum</td>
<td>EaSe</td>
<td>Zoo</td>
<td>51</td>
<td>130.76</td>
<td>2.56</td>
<td>6.06</td>
<td>6.24</td>
</tr>
<tr>
<td>Himatanthus obovatus</td>
<td>Pio</td>
<td>Ane</td>
<td>37</td>
<td>94.87</td>
<td>3.20</td>
<td>6.11</td>
<td>5.54</td>
</tr>
<tr>
<td>Eschweilera ovata</td>
<td>EaSe</td>
<td>Zoo</td>
<td>30</td>
<td>76.92</td>
<td>3.20</td>
<td>6.19</td>
<td>5.11</td>
</tr>
<tr>
<td>Tachigali densiflora</td>
<td>LaSe</td>
<td>Ane</td>
<td>25</td>
<td>64.10</td>
<td>2.56</td>
<td>6.89</td>
<td>4.80</td>
</tr>
<tr>
<td>Ecclinusa ramiflora</td>
<td>LaSe</td>
<td>Zoo</td>
<td>24</td>
<td>61.53</td>
<td>1.28</td>
<td>7.75</td>
<td>4.59</td>
</tr>
</tbody>
</table>

Ecological groups and dispersal syndrome

The fragments MJWR1, RPPN Bom Jardim, and SLI1 had the highest proportion of pioneer and early secondary species (Fig. 5). *Tapirira guianensis* (Anacardiaceae) is a pioneer species, and it showed high dominance in the fragments considered most impacted in the municipality of Santa Luzia do Itanhy. The pioneer species *T. guianensis* and *H. obovatus* were common among the largest transects, mainly in SLI1 and RPPN Tapera (Table 1; Fig. 5). From this perspective, the high frequency of these species’ pioneer individuals may be bioindicators of secondary forest. The MJWR fragment also presents the dominance of pioneer species in its transects, mainly MJWR3, which has a strong anthropic influence on its edge.

Concerning the dispersion syndrome, we have a high abundance of zoochoric tree individuals, with the majority reaching over 60% of this category, the same pattern found when the
fragments are analyzed separately, with zoochoric dispersal dominance in all the six sites. *Byrsonima sericea* (35 individuals), *Campomanesia dichotoma* (16 individuals), *T. guianensis* (16 individuals.), and *Simaba versicolor* (13 individuals.) are the most abundant species in Mata do Junco Wildlife Refuge. In the South fragments, *T. guianensis* (61 individuals), *Protium heptaphyllum* (51 individuals), *Ecclinusa ramiflora* (24 individuals), and *B. sericea* (21 individuals) are the most abundant zoochoric species. A highlight for the SLI1 fragment, which presented about 90% of zoochoric individuals, reflecting the dominance of *B. sericea* and *T. guianensis* (Fig. 5).

Figure 5 – Demonstrative of the proportion of tree individuals’ composition, their ecological groups, and their Dispersion Syndrome for each site. MJWR = Mata do Junco Wildlife Refuge; RPPN Bom Jardim = Reserva Particular do Patrimônio Natural Bom Jardim; RPPN Tapera = Reserva Particular do Patrimônio Natural Tapera; SLI = Santa Luzia Itanhy fragments.

Discussion

Our results reveal that the mutual understanding of phytosociological, ecological, and structural patterns may be essential to understand the persistence of titi monkeys in forest remnants. The higher mean distance between trees associated with smaller DBH is undoubtedly an artifact of forest depletion, which leads us to believe that a higher incidence of light leads to the increasing of light-demanding trees in the initial stages in those fragments. The results may demonstrate a positive ability of *Callicebus coimbrai* to survive in diverse environments in structural terms, with differences also regarding variations in the ecological successional stages and composition of plant species together with their dispersion syndromes.
Tree diversity, habitat structure, and phytosociological analysis

The tree diversity between the three major areas (MJWR, RPPN, and SLI) presented no significant differences, with the MJWR — the larger area in size — collectively gathering more species, which may be an artifact of sampled transects. Typically, larger areas hold more species and nearby forest fragments — since the proximity may allow a higher similarity due to metapopulations dynamic processes (Kadmon & Allouche, 2007; Fahrig, 2013). For instance, in Santa Luzia do Itanhy fragments, the three non-protected fragments (SLI, SL2, and SL3 — less isolated) presented a higher diversity than the two RPPNs — more isolated (Fig. 1). In contrast, the last areas are slightly more uniform than the early ones, indicating that perhaps the most remarkable diversity found may result from a few dominant species, while others are rare.

This pattern may indicate a possible floristic homogenization process, replacing shade-tolerant species to light-demand, dominant and small-seeded species, while others become increasingly rare (Laurence et al., 2006; Tabarelli et al., 2010). Similarly, it might also be the case of the pattern in cluster formation (Fig. 3). For instance, the three non-protected fragments and RPPN Tapera (the closest forest fragment) are more similar according to their tree composition within Santa Luzia do Itanhy fragments. Nevertheless, we must highlight that clusters’ formation does not represent similarity properly since a similarity Index below 50% is considered weak (Magurran, 2011). Overall, the fragments may be undergoing a floristic differentiation — severely fragmented landscape characteristic — since the presence of an inhospitable environment can hamper the biotic seed dispersal (Arroyo-Rodrigues et al., 2013).

Although some patterns remain undetected, the DBH values are higher in the transects at the protected areas (MJWR transects and RPPN Tapera) and the distance between the points. These areas naturally possess more protection against forest depletion and other anthropic disturbance, allowing a continuum tree growth with, consequently, larger DBH. This protection, nevertheless, may be insufficient against overall forest edge effects. Two remnants — MJWR and RPPN Bom Jardim — presented some positive relation between the parameters (DBH/Distance between trees; Tree Height/Distance between trees). In both cases, we may suppose that the presence of large trees is scarce. In other words, those regions may present a high incidence of sunlight, favoring light-demanding trees - that possibly are in the early stage of growth. Consequently, in short distances, trees may present a short to medium height.

The phytosociological aspects may confirm this inference, in which in both areas, the most important trees are mainly pioneers and early secondary, that is, light-demanding species (Table 1). After the occurrence of any disturbance and in the presence of large amounts of sunlight, these initial stage trees tend to occupy any forest area. This rapid growth species may result in high canopy heights and small DBH (Iida et al., 2011; Sumida et al., 2013; Gustafsson et al., 2016), and this may be the case we observe here. In parallel, we highlight the complicated relationship between the habitat structure and habitat fragmentation and loss since these two factors may increase the edge effects. Thus, the habitat structure becomes less complex and more fragile by reducing trees’ diversity, large tree density, increasing the abundance of light-demanding trees (Hernandez-Stefanoni, 2005; Rocha-Santos et al., 2016; Benchimol et al., 2017).

Ecological groups and dispersal syndrome

The habitat structure and phytosociology are intrinsically related to the ecological groups in the study area. An enormous proportion of the early succession categories’ tree species may indicate a large edge effect in those sites. Mature forests exhibit a low density and high mortality of pioneer and early secondary trees (Gandolfi et al., 1995; Murcia, 1995; Hubbel et al., 1999; Carvalho et al., 2007; Santana et al., 2020). Thus, the elevated amount of species of these two groups, and, therefore, the low incidence of shade-tolerant species is a characteristic of disturbed forests or in the initial ecological succession process, since these species exert an initial regeneration function (Gandolfi et al., 1995; Murcia, 1995; Hubbel et al., 1999; Carvalho et al., 2007).

Light-demanding trees readily assimilate mineral/nutrient resources available in the environment, especially the nitrogen and those nutrients essential to the photosynthesis process (Reich et al., 1998; Taiz & Zieger, 1998).
They possess a fast-vertical growth and a strong positive response to light (Pooter et al., 2008; Wright et al., 2010; Gustafsson et al., 2016). On the other hand, in a succession continuum, they present high mortality, being replaced by the shade-tolerant species (Gustafsson et al., 2016), in a classic trade-off between rapid growth and increase of mortality (King et al., 2006; Pooter et al., 2008).

Species with climax properties, in contrast, invest their resources in endurance and stability (Rozendaal et al., 2006; Pooter et al., 2008; Wright et al., 2010). However, because they need specific conditions to develop (e.g., low humidity and airspeed; Magnano et al., 2015), these species are typically found in the forest’s interior or mature forests. Forest edges contain characteristics, such as increased air temperature and speed and low humidity, which play an essential role in tree mortality (Tabarelli et al., 2008, Magnano et al., 2015). Therefore, virtually only early successional species can grow in those environments (Tabarelli et al., 2008). In our study, all the sampled sites possess conditions typical of forest edge scenarios and secondary forests, with many shade-intolerant species (Fig.3). MJWR and SLI, for example, have much of their composition dominated by only one species (Byrononima sericera, Tapirira guianensis, respectively), light-demanding species (Tables 1; A.1).

Another aspect typically associated with tree species richness is the dispersal syndrome. It is expected to find more significant variation in resource availability in areas with more incredible wealth since we will have a more significant variation in phenological cycles throughout the year (Monasterio & Sarmiento, 1976; Wright & Calderon, 1995). The zoochoric dispersal syndrome was dominant for all the analyzed fragments, a typical result for the Saraípe Atlantic Forest (Santana et al., 2017; Freire et al., 2016). The abundance of zoochoric species is essential for feeding frugivore fauna, mainly for Callicebus coimbraí (Souza-Alves et al., 2011). On the other hand, the dominance of only one zoochorous species can represent a disadvantage for the tiriti monkey and other frugivorous species, as the availability of the resource becomes limited through the year, as in the example of the dominance of Tapirira guianensis in the SLI1 fragment (60% of individuals), commonly fruiting between March and June (Santana et al., 2018).

Additionally, more complex habitats, well stratified and heterogeneous, hold more species than simplified habitats (August, 1983; Passamani et al., 1995; Stevenson, 2001; Grelle et al., 2003; Aldana et al., 2008; Wagner et al., 2009), and in some cases, is the primary determinant of the presence of species in a given environment (Delciliellos et al., 2015). Overall, the sampled sites might manifest some specific resistance by contemplating zoochoric tree species for the most part. In other words, the fragments may encompass important fauna species responsible for transport and disperse plant seeds, even with a fragile and labile habitat structure. The occurrence of seed dispersers may indicate the continuity of succession within the forest fragments and the possibility of natural regeneration in a non-habitat matrix. In a general manner, it seems vital to guarantee the flux of seed-dispersal through fauna among the close forest remnants at each regional scenario, the WRMJ, and the SL-RPPN, to the maintenance of regional tree richness.

Implications for conservation

As shown by Gouveia et al. (2016), if the climate and the land-use change scenario continue, the population of tiriti monkeys is predicted to shrink to about 4.0%. This disturbing picture is related to the forest fragmentation and habitat loss (Andren et al., 1994; Fahrig et al., 2003; Ribeiro et al., 2009; Marques et al., 2017), that also affect the already established Protected Areas, with the decrease of surrounding forests, isolating, even more, those areas (DeFries et al., 2005). Thus, the need for management and conservation of potential habitats becomes quite urgent.

The protected areas are essential to protect endangered species and manage populations (Strier & Fonseca, 1996). Three of the sampled transects in this study are in a critical State Protected Area, the Mata do Junco Wildlife Refuge, while only two are protected from five fragments in the south of the state. Thus, it is essential to create alternatives for connectivity between those fragments and at close distances. The other fragments of Santa Luzia do Itanhy, for example, can be transformed into private natural heritage reserves (RPPN, in Portuguese) once those areas may also englobe the threatened maned sloth (Bradypus torquatus) (Santos et al., 2019), plus management that improves
the quality of all the fragments. Additionally, future reforestation programs resulting from environmental compensation (as a compensation process from massive infrastructure constructions) might prioritize the plant species enrichments in those areas.

Callicebus are monogamous with small groups composed of a mature/reproductive couple and their immature offspring (Kinsey, 1981; Robinson *et al.*, 1987; Vallegia *et al.*, 1999; Chagas & Ferrari, 2011). When the young reach adult age, they have to leave the group, finding a new territory to live and form a family (Bicca-Marques & Heymann, 2013). This is a very critical characteristic since they need the forest to disperse. The fragmentation disrupts this movement, decreasing the species’ potential areas to live, making its dispersion difficult. Sometimes, they risk their lives when passing through roads or small ranches (with domestic dogs), for instance. In the last years, in the MJWR surroundings, it has happened on at least three occasions: In January 2011 (killed by a dog), in December 2013 (roadkill), and in February 2016 (roadkill); in both road kills, the titi monkeys were killed by a motor vehicle (RB-M, pers. obs.), the most recent of them in the vicinity of the MJWR.

Several studies report the establishment of wildlife corridors since they facilitate the animal movements between sites (Arendt, 2004; Hudgens & Haddad, 2003; Pardini *et al.*, 2005), including specific studies on titi monkeys (see Gouveia *et al.*, 2017). These proposals can be a plausible alternative to those fragments close to each other and other sites, as fragments SLI1, 2, and 3. As they are near, the simple establishment of a green corridor (Goosem *et al.*, 2005) may facilitate the titi monkeys flow between them, contributing to the maintenance of both titi monkeys and the tree species richness in those areas. This movement of *Callicebus* individuals should not only be one of the reasons for the current maintenance of plant diversity in these small fragments, as its facilitation should further promote the increasing tree species richness of them, in the future, due to seed zoochory (Baião *et al.*, 2015; Souza-Alves *et al.*, in press).

Conclusions

Knowing the habitats of titi monkeys and identifying the factors that influence their distribution is essential for planning and developing practical management actions (Gouveia *et al.*, 2017) for the species’ long-term survival. Contrary to what was typically expected, the titi monkeys may inhabit various environments (Ferrari *et al.*, 2013), including those considered unstable and poor. Finally, the species might benefit from secondary forests’ structure, with a certain degree of disturbance, as long as there are available resources and conditions throughout the year.

Acknowledgments

The data we present here come from two scientific trainee initiatives for undergraduate students from the CNPq in association with the ICMBio to evaluate habitat structure in forest fragments with titi monkeys. We would like to thank the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and the National Council for the Scientific and Technological Development (CNPq) for the Scientific Initiation Program (PIBIC) scholarships to JPS (2016-2017) and PMS (2009-2011). The CNPq for the undergraduate, technical and predoctoral scholarships to PMS (process 503122/2010-6; 350057/2020-6), and Post-Doctoral fellowship to RB-M (503372/2014-5, 150123/2018-3). The Brazilian Coordination for Higher Education Personnel Training (CAPES) for the post-doctoral fellowships to RB-M (88887.320996/2019-00); RB-M was also supported by Mohamed bin Zayed Species Conservation Fund (12055114), Primate Action Fund (1001257), and Primate Conservation Inc. (1158). We thank the Sergipe Environment State Secretariat for the research permit (License nº: 2011.05.0706/00119-017) and the Boticário Foundation (Project 0846_20092). We are also grateful to Marcelo Guigó, Elisa Cravo, and Gilmara Freire for their field assistance and Gerson Buss for their valuable comments in developing the research projects in the paper’s first drafts. We are incredibly grateful to Mr. Francisco (Farm Manager) and Mr. Raimundo Juliano (*in memoriam*) for their kind acceptance to run field researches in the Private Nature Reserves mentioned above. Mr. Raimundo...
Juliano is one of the first, if not the first, to promote the private nature reserves in the State of Sergipe, mainly to protect the Endangered Coimbra-Filho’s titi monkey (Callicebus coimbrai), and sadly died as a result of the COVID-19, thank you for your contribution and pioneering.

References

August PV. The Role of Habitat Complexity and Heterogeneity in Structuring Tropical Mammal Communities. Ecology, 64: 1495-1507, 1983.

Baiao SAA. 2013. Macaco Guigós (Callicebus coimbrai): dispersão de sementes e conhecimento ecológico na Mata Atlântica de Sergipe. Dissertação de Mestrado, Universidade Federal de Sergipe, São Cristóvão.

Domingues CÂJ, Gomes VGN, Quirino ZGM. Dispersal syndromes in the largest protection area of the Atlantic Forest in the State of Paraíba, Brazil. Biotemas, 26(3), 99-108. 2013.

Gouveia SF, et al. Climate and land use changes will degrade the configuration of the landscape for titi monkeys in eastern Brazil. Global Change Biology, 22, 2016.

Rizzini, AL, Barbosa MRV, Ferrari SF, Thomas WW. Diversity of trees and lianas in two sites in the coastal Atlantic Forest of Sergipe, northeastern Brazil. Check List, 10(4): 709-717, 2014.

Table S.1 – Tree species listed per family, where: MJWR = Mata do Junco Wildlife Refuge fragment; SLI = Santa Luzia Itanhy fragment.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MJWR</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Tapirira guianensis Aubl.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Annona montana Macfad. & R.E.Fr.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Xylophia frutescens Aubl.</td>
<td>2</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Aspidosperma spruceanum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Tabernaemontana laeta Mart.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Himatanthus bracteatus (A.DC.) Woodson</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Himatanthus obovatus Müll.Arg.</td>
<td>8</td>
</tr>
<tr>
<td>Araliaceae</td>
<td>Didymopanax morototoni (Aubl.) Decne. & Planch.</td>
<td>15</td>
</tr>
<tr>
<td>Bignonaceae</td>
<td>Tabebuia aurea (Silva Manso) S.Moore</td>
<td>4</td>
</tr>
<tr>
<td>Burseraceae</td>
<td>Protium heptaphyllum March.</td>
<td>8</td>
</tr>
<tr>
<td>Celastraceae</td>
<td>Maytenus obtusifolia Mart.</td>
<td>0</td>
</tr>
<tr>
<td>Clusiaceae</td>
<td>Clusia nemorosa G.Mey</td>
<td>0</td>
</tr>
<tr>
<td>Dilleniaceae</td>
<td>Curatella americana L.</td>
<td>0</td>
</tr>
<tr>
<td>Ehretiaceae</td>
<td>Cordia toquete Sieber ex Griseb.</td>
<td>0</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Bowdichia virgilioides Kunth</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Caesalpinia ferrea Mart. ex Tul.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Cassia grandis L.f.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inga vera Wild.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Parkia pendula Benth. ex Walp.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Swartzia dipetala Wild. ex Vogel</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tachigali densiflora (Benth.) L.F.Gomes da Silva & H.C.Lima</td>
<td>0</td>
</tr>
<tr>
<td>Lamiaeeae</td>
<td>Vitex rufescens Gürke</td>
<td>0</td>
</tr>
<tr>
<td>Lauraceae</td>
<td>Ocotea canaliculata Mez</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Ocotea duckei Vattimo-Gil</td>
<td>0</td>
</tr>
<tr>
<td>Lecythidaceae</td>
<td>Eschweilera ovata Mart</td>
<td>14</td>
</tr>
<tr>
<td>Malpighiaceae</td>
<td>Byrsonima sericea DC.</td>
<td>35</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Apeiba tibourbou Aubl.</td>
<td>9</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Sorocea hilarii Gaudich.</td>
<td>0</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Campomanesia aromatica (Aubl.) Griseb.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Campomanesia dichotoma (O.Berg) Mattos</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Campomanesia ilhoensis Mattos</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Eugenia candolleana DC.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Myrcia polyantha DC.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Psidium guajava L.</td>
<td>9</td>
</tr>
<tr>
<td>Nyctaginaceae</td>
<td>Guapira opposita (Vell.) Reitz</td>
<td>9</td>
</tr>
<tr>
<td>Peraceae</td>
<td>Pera anisotricha Müll.Arg.</td>
<td>0</td>
</tr>
<tr>
<td>Peraceae</td>
<td>Pogonophora schomburgkiana Miers ex Benth.</td>
<td>4</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>Coccoloba laevis Casar.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Coccoloba rosea Meisn.</td>
<td>0</td>
</tr>
</tbody>
</table>
Sapindaceae

- *Allophylus edulis* Radlk. ex Warm.
- *Cupania impressinervia* Acev.-Rodr.
- *Cupania oblongifolia* Mart.

Sapotaceae

- *Ecclinusa ramiflora* Mart.
- *Micropholis gardneriana* Pierre
- *Pouteria gardneri* (Mart. & Miq.) Baehni

Simaroubaceae

- *Simaba versicolor* A.St.-Hil

Urticaceae

- *Cecropia pachystachya* Trécul

Table S.2 – Diversity parameters, where: Trans = Transect; Dist = Distance; N Points = Number of Points; N Spp. = Number of species; MJWR = Mata do Junco Wildlife Refuge; RPPN Bom Jardim = Reserva Particular do Patrimônio Natural Bom Jardim; RPPN Tapera = Reserva Particular do Patrimônio Natural Tapera; SLI = Santa Luzia Itanhy fragment.

<table>
<thead>
<tr>
<th>Trans</th>
<th>Fragments</th>
<th>N Points</th>
<th>Dist</th>
<th>N Spp.</th>
<th>Shannon’s Diversity</th>
<th>Pielou’s Evenness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MJWR1</td>
<td>101</td>
<td>466.80</td>
<td>49</td>
<td>3.51</td>
<td>0.90</td>
</tr>
<tr>
<td>2</td>
<td>MJWR2</td>
<td>90</td>
<td>407.51</td>
<td>30</td>
<td>2.93</td>
<td>0.86</td>
</tr>
<tr>
<td>3</td>
<td>MJWR3</td>
<td>84</td>
<td>334.25</td>
<td>33</td>
<td>2.91</td>
<td>0.83</td>
</tr>
<tr>
<td>4</td>
<td>RPPN Bom Jardim</td>
<td>99</td>
<td>381.77</td>
<td>24</td>
<td>2.67</td>
<td>0.84</td>
</tr>
<tr>
<td>5</td>
<td>RPPN Tapera</td>
<td>104</td>
<td>478.93</td>
<td>25</td>
<td>2.69</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>SLI1</td>
<td>95</td>
<td>367.1</td>
<td>26</td>
<td>2.55</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>SLI2</td>
<td>104</td>
<td>355.92</td>
<td>42</td>
<td>3.14</td>
<td>0.84</td>
</tr>
<tr>
<td>8</td>
<td>SLI3</td>
<td>103</td>
<td>374.43</td>
<td>39</td>
<td>3.13</td>
<td>0.85</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>780</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S.3 – Characterization of fragments based on the analysis of structural parameters. Different and lowercase letters represent a significant difference (p-value <0.05) between treatments.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Fragment</th>
<th>Distance (m)</th>
<th>Height (m)</th>
<th>DAP (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>MJWR1</td>
<td>4.62 a</td>
<td>2.72</td>
<td>11.37 ab</td>
</tr>
<tr>
<td>2</td>
<td>MJWR2</td>
<td>4.53 aC</td>
<td>2.90</td>
<td>10.92 Ab</td>
</tr>
<tr>
<td>3</td>
<td>MJWR3</td>
<td>3.97 a</td>
<td>2.57</td>
<td>12.69 aB</td>
</tr>
<tr>
<td>4</td>
<td>RPPN Bom Jardim</td>
<td>3.86 B</td>
<td>2.87</td>
<td>12.07 aBC</td>
</tr>
<tr>
<td>5</td>
<td>RPPN Tapera</td>
<td>4.61 a</td>
<td>3.72</td>
<td>12.35 AB</td>
</tr>
<tr>
<td>6</td>
<td>SLI1</td>
<td>3.42 B</td>
<td>1.99</td>
<td>12.58 ABC</td>
</tr>
<tr>
<td>7</td>
<td>SLI2</td>
<td>3.86 B</td>
<td>2.39</td>
<td>8.93 AB</td>
</tr>
<tr>
<td>8</td>
<td>SLI3</td>
<td>3.64 B</td>
<td>2.32</td>
<td>12.66 AB</td>
</tr>
</tbody>
</table>
Structure and Composition of Atlantic Forest Fragments Inhabited by Callicebus coimbrai in Northeastern Brazil: Subsidies for Landscape Management Strategies

DOI: 10.37002/biobrasil.v12i1.1846