Bat fauna in an ore extraction area in Central Brazil
DOI:
https://doi.org/10.37002/biodiversidadebrasileira.v14i4.2385Palavras-chave:
Chiroptera , inventory , ferronickel, conservationResumo
Opencast mining often causes considerable changes to the landscape, including habitat fragmentation and impact on bat activities. The present study aimed to survey the composition of bats in an open pit-mining region in Barro Alto, Goiás. During 20 days of sampling in the rainy season between October (2021) and February (2022), 174 bats of 15 species were sampled. All animals belonged to the Phyllostomidae family of seven subfamilies and 13 genera. Carollia perspicillata was the dominant species corresponding to 70.69% of captures. The captured animals had a variety of eating habits, categorized as nectarivore, hematophagous, frugivore, insectivore, and omnivore. According to the national and international lists, none of the species are endangered. Finally, new research is encouraged to leverage knowledge of the bats diversity in the region and relate it to the impacts of mining.
Referências
1. MDD. Mammal Diversity Database [https://www.mammaldiversity.org/taxa.html]. Explore Current Mammalian Taxonomy. [accessed on November 5, 2024]. Available at: https://www.mammaldiversity.org/taxa.html
2. Garbino GST, Gregorin R, Lima IP, Loureiro L, Moras LM, Moratelli R, Nogueira MR, Pavan AC, Tavares VC, do Nascimento MC, Peracchi AL. Updatedche cklist of Brazilian bats: versão 2020. Comitê da Lista de Morcegos do Brasil - CLMB. Sociedade Brasileira para o Estudo de Quirópteros (Sbeq). [Internet]. 2024 November [cited November 04]. Available from: https://www.sbeq.net/lista-de-especies
3. Zortéa M, Ribeiro MCS, Mata PSD, Bonvicino CR. Morphological and molecular evidence of the occurrence of Artibeus amplus (Chiroptera: Phyllostomidae) in Brazil. Zoologia (Curitiba). 2023; 40: e22058. https://doi.org/10.1590/S1984-4689.v40.e22058
4. Aguiar LM, Bernard E, Ribeiro V, Machado RB, Jones G. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Glob. Ecol. Conserv. 2016; 5: 22-33. doi.org/10.1016/j.gecco.2015.11.011
5. Benvindo-Souza M, Hosokawa AV, Dos Santos CGA, de Assis RA, Pedroso TA, Borges RE, Pacheco SM, Souza Santos LR, Silva DDM. Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil. Environ Pollut. 2022; 118579. doi.org/10.1016/j.envpol.2021.118579
6. Sil-Berra LM, Sánchez-Hernández C, Romero-Almaraz MDL, Reynoso VH. Bat species diversity and abundance of trophic guilds after a major hurricane along an anthropic disturbance gradient. Diversity. 2022; 14: 818. https://doi.org/10.3390/d14100818
7. Gorbunova V, Seluanov A, Kennedy BK. The world goes bats: living longer and tolerating viruses. Cell Metab. 2020; 32: 31-43. doi.org/10.1016/j.cmet.2020.06.013
8. Hoyt JR, Kilpatrick AM, Langwig KE. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 2021; 19: 196-210. doi.org/10.1038/s41579-020-00493-5
9. Reusch C, Lozar M, Kramer-Schadt S, Voigt CC. Coastal onshore wind turbines lead to habitat loss for bats in Northern Germany. J Environ Manage. 2022; 310: 114715. doi.org/10.1016/j.jenvman.2022.114715
10. Frick WF, Kingston T, Flanders J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 2020; 1469: 5-25. doi.org/10.1111/nyas.14045
11. Kafash A, Ashrafi S, Yousefi M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environ Sci Pollut Res. 2022; 29: 25881-25891. doi.org/10.1007/s11356-021-17412-7
12. Altringham J, Kerth G. Morcegos e estradas. Gerald. Bats and roads. Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham. 2016; 35-62.
13. Schanzer S, Koch M, Kiefer A, Jentke T, Veith M, Bracher F, Bracher J, Müller C. Análise de resíduos de pesticidas e poluentes orgânicos persistentes em morcegos alemães. Chemosphere. 2022; 305: 135342. doi.org/10.1016/j.chemosphere.2022.135342
14. Sotero DF, Benvindo-Souza M, de Freitas RP, Silva DDM. Bats and pollution: Genetic approaches in ecotoxicology. Chemosphere. 2022; 307:135934. doi.org/10.1016/j.chemosphere.2022.135934
15. Theobald E, Hosken DJ, Foster P, Moyes K. Mines and bats: the impact of open-pit mining on bat activity. Acta Chiropt. 2020; 22: 157-166. doi.org/10.3161/15081109ACC2020.22.1.014
16. Zocche JJ, Leffa DD, Damiani AP, Carvalho F, Mendonça RÁ, dos Santos CEI, Boufleur LA, Dias JF, de Andrade VM. Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil. Environ. Res. 2010; 110: 684-691. doi.org/10.1016/j.envres.2010.06.003
17. Pedroso-Fidelis GS, Farias HR, Mastella GA, Boufleur-Niekraszewicz LA, Dias JF, Alves MC, Silveira PCL, Nesi RT, Carvalho F, Zocche JJ, Pinho RA. Pulmonary oxidative stress in wild bats exposed to coal dust: A model to evaluate the impact of coal mining on health. Ecotoxicol. Environ. Saf. 2020; 191: 110211. doi.org/10.1016/j.ecoenv.2020.110211
18. Sotero DF, Benvindo-Souza M, de Carvalho Lopes AT, de Freitas RMP, de Melo e Silva D. Damage on DNA and hematological parameters of two bat species due to heavy metal exposure in a nickel-mining area in central Brazil. Environ. Monit. Assess. 2023; 195(8): 1000. doi.org/10.1007/s10661-023-11526-w
19. Benvindo-Souza M, Sotero DF, Dos Santos CGA, de Assis RA, Borges RE, de Souza Santos LR, de Melo e Silva D. Genotoxic, mutagenic, and cytotoxic analysis in bats in mining area. Environ Sci Pollut Res. 2023; 30(40): 92095-92106. doi.org/10.1007/s11356-023-28861-7
20. Destro ALF, Gonçalves DC, da Silva Alves T, Gregório KP, da Silva VM, Santos VR, Castro OW, Baggio Filho H, Garbino GST, Gonçalves RV, Oliveira JM, Freitas MB. Iron and aluminum ore mining pollution induce oxidative and tissue damage on fruit-eating bats from the Atlantic Forest. J Hazard Mater. 2014; 465: 133285. doi.org/10.1016/j.jhazmat.2023.133285
21 Storz JF, Williams CF. Summer population structure of subalpine bats in Colorado. Southwest. Nat. 1996; 41(3): 322-324.
22. Diamond GF, Diamond JM. Bats and mines: evaluating Townsend’s big-eared bat (Corynorhinus townsendii) maternity colony behavioral response to gating. West. N. Am. Nat. 2014; 74(4): 416-426. doi.org/10.3398/064.074.0407
23. Thakare M, Randive K. Distinctive Bats Species in Abandoned Mines: Adventure Geotourism for Nature Enthusiasts. In: Randive K, Pingle S, Agnihotri A. (eds.) Innovations in Sustainable Mining. Earth and Environmental Sciences Library. Springer, Cham. 2021. doi.org/10.1007/978-3-030-73796-2_14
24. Porfirio G, Bordignon MO. Phyllostomid bats and their diets at Urucum massif, Mato Grosso do Sul, Brazil. Chiropt. Neotrop. 2013; 21(2): 1332-1337.
25. Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. Morcegos do Brasil: Guia de Campo. Rio de Janeiro: Technical Books. Londrina; 2013.
26. Hannibal W, Zortéa M, Calaça AM, Carmignotto AP, Bezerra AM, Carvalho HG, Bonvicino CR, Martins ACM, Aguia LMS, de Souza MB, Mattos I, Oliveira RF, Brito D, Silva DA, Guimães MA, Carmo EMB, Moreira, JC. Check list of mammals from Goiás, central Brazil. Biota Neotrop. 2021; 21. doi.org/10.1590/1676-0611-BN-2020-1173
27. MMA. Ministério do Meio Ambiente - Lista Oficial das Espécies da Fauna Ameaçadas de Extinção, 2022. [Internet]. 2024 November [cited November 04]. Available from https://drive.google.com/file/d/13H9_s1eWJgwczD0D1-v5ptpeHBVzcbdE/view
28. IUCN. The IUCN Red List of Threatened Species. Version 2022-1. [Internet]. 2024 November [cited November 04]. Available from: https://www.iucnredlist.org
29. Pereira MJR, Fonseca C, Aguiar LM. Loss of multiple dimensions of bat diversity under land-use intensification in the Brazilian Cerrado. HYSTRIX, 2018; 29(1): 25. doi.org/10.4404/hystrix-00020-2017
30. Zortéa M, D’arc FC. Diversity of three bat assemblages of Central Brazil. Mastozool. Neotrop. 2019; 26: 468-474. doi.org/10.31687/saremMN.19.26.2.0.09
31. da Silva JPA, Carvalho AR, de Oliveira Motta JA. Fauna de morcegos (Mammalia, Chiroptera) em cavernas do bioma Cerrado na região de Indiara (Goiás). Rev. Bras. Zoociênc. 2009; 11(3): 209-217.
32. Pina SM, Meyer CF, Zortéa M. A comparison of habitat use by phyllostomid bats (Chiroptera: Phyllostomidae) in natural forest fragments and Eucalyptus plantations in the Brazilian Cerrado. Chiropt. Neotrop. 2013; 19: 14-30.
33. Torres JM, dos Anjos EA, Ferreira CM. Frugivory by phyllostomid bats (Chiroptera, Phyllostomidae) in two cerrado urban remnants in Campo Grande, Mato Grosso do Sul. Iheringia. Iheringia, Sér. Zool. 2018; 108. doi.org/10.1590/1678-4766e2018002
34. Carvalho WD, Meyer CF, Xavier BDS, Mustin K, Castro IJD, Silvestre SM, Pathek DB, Capaverde Jr. UD, Hilário R, Toledo JJD. Consequences of replacing native savannahs with acacia plantations for the taxonomic, functional, and phylogenetic α-and β-diversity of bats in the Northern Brazilian Amazon. Front. Ecol. Evol. 2020; 8:609214.
35. Benvindo-Souza M, de Souza Santos LR, Elias Borges R, Alves de Assis R, de Melo e Silva D, Zortea M, Missel Pacheco S. Thousands of bats: A portrait of the chiropteran fauna of Palmas city, Central Brazil. Austral Ecol. 2021; 46(5): 876-879. doi.org/10.1111/aec.13032
36. Sperr EB, Caballero-Martínez LA, Medellin RA, Tschapka M. Seasonal changes in species composition, resource use and reproductive patterns within a guild of nectar-feeding bats in a west Mexican dry forest. J. Trop. Ecol. 2011; 27(2): 133-145. doi.org/10.1017/S0266467410000714
37. Ferreira DF, Rocha R, López-Baucells A, Farneda FZ, Carreiras JM, Palmeirim JM, Meyer CF. Season-modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 2017; 7(11): 4059-4071. doi.org/10.1002/ece3.3005
38. Cárdenas-Canales EM, Stockmaier S, Cronin E, Rocke TE, Osorio JE, Carter GG. Social effects of rabies infection in male vampire bats (Desmodus rotundus). Biol. Lett. 2022; 18: 20220298. doi.org/10.1098/rsbl.2022.0298
39. Beilke EA, O’Keefe JM. Bats reduce insect density and defoliation in temperate forests: An exclusion experiment. Ecology. 2022; e3903. doi.org/10.1002/ecy.3903
40. Aguiar LM, Bueno-Rocha ID, Oliveira G, Pires ES, Vasconcelos S, Nunes GL, Frizzas MR, Togni PH. Going out for dinner - The consumption of agriculture pests by bats in urban areas. PloS One 2021; 16:e0258066. doi.org/10.1371/journal.pone.0258066.
41. Zurcher AA, Sparks DW, Bennett VJ. Why the bat did not cross the road?. Acta Chiropt. 2010; 12(2): 337-340. doi.org/10.3161/150811010X537918
42. Oliveira HFM, Fandos G, Zangrandi PL, Bendini HD N, Silva DC, Muylaert RL, Marinho-Filho JS, Fonseca LM, Rufin P, Schwieder M, Domingos FMC. Crops, caves, and bats: deforestation and mining threaten an endemic and endangered bat species (Lonchophylla: Phyllostomidae) in the Neotropical savannas. HYSTRIX. 2022; 33(2): 158-166. doi.org/10.4404/hystrix-00541-2022
43. Carrasco-Rueda F, Loiselle BA, Frederick PC. Mercury bioaccumulation in tropical bats from a region of active artisanal and small-scale gold mining. Ecotoxicology. 2020; 29: 1032-1042. doi.org/10.1007/s10646-020-02195-3
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Os autores mantêm os direitos autorais de seus artigos sem restrições, concedendo ao editor direitos de publicação não exclusivos.
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Os artigos estão licenciados sob uma licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0). O acesso é livre e gratuito para download e leitura, ou seja, é permitido copiar e redistribuir o material em qualquer mídia ou formato.