Fauna de morcegos em área de extração de minério no Brasil Central

Authors

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v14i4.2385

Keywords:

Chiroptera , inventário, ferroníquel , conservação

Abstract

A mineração a céu aberto geralmente provoca mudanças consideráveis na paisagem, incluindo a fragmentação de habitat e impacto nas atividades dos morcegos. O presente estudo teve como objetivo levantar a composição de morcegos em uma região de mineração a céu aberto no município de Barro Alto, Goiás. Durante 20 dias de amostragens no período chuvoso entre o final de outubro (2021) e fevereiro (2022) foram amostrados 174 morcegos de 15 espécies. Todos os animais pertenciam à família Phyllostomidae de sete subfamílias e 13 gêneros. Carollia perspicillata foi a espécie dominante correspondendo 70,69% das capturas. Os animais capturados possuíam uma variedade de hábitos alimentares categorizados como nectarívoro, hematófago, frugívoro, insetívoro e onívoro. Nenhuma das espécies encontra-se ameaçada de extinção, conforme as listas nacional e internacional. Finalmente, novas pesquisas na área são encorajadas para alavancar o conhecimento da diversidade de morcegos na região e, sobretudo relacionar com os impactos da mineração.

References

1. MDD. Mammal Diversity Database [https://www.mammaldiversity.org/taxa.html]. Explore Current Mammalian Taxonomy. [accessed on November 5, 2024]. Available at: https://www.mammaldiversity.org/taxa.html

2. Garbino GST, Gregorin R, Lima IP, Loureiro L, Moras LM, Moratelli R, Nogueira MR, Pavan AC, Tavares VC, do Nascimento MC, Peracchi AL. Updatedche cklist of Brazilian bats: versão 2020. Comitê da Lista de Morcegos do Brasil - CLMB. Sociedade Brasileira para o Estudo de Quirópteros (Sbeq). [Internet]. 2024 November [cited November 04]. Available from: https://www.sbeq.net/lista-de-especies

3. Zortéa M, Ribeiro MCS, Mata PSD, Bonvicino CR. Morphological and molecular evidence of the occurrence of Artibeus amplus (Chiroptera: Phyllostomidae) in Brazil. Zoologia (Curitiba). 2023; 40: e22058. https://doi.org/10.1590/S1984-4689.v40.e22058

4. Aguiar LM, Bernard E, Ribeiro V, Machado RB, Jones G. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Glob. Ecol. Conserv. 2016; 5: 22-33. doi.org/10.1016/j.gecco.2015.11.011

5. Benvindo-Souza M, Hosokawa AV, Dos Santos CGA, de Assis RA, Pedroso TA, Borges RE, Pacheco SM, Souza Santos LR, Silva DDM. Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil. Environ Pollut. 2022; 118579. doi.org/10.1016/j.envpol.2021.118579

6. Sil-Berra LM, Sánchez-Hernández C, Romero-Almaraz MDL, Reynoso VH. Bat species diversity and abundance of trophic guilds after a major hurricane along an anthropic disturbance gradient. Diversity. 2022; 14: 818. https://doi.org/10.3390/d14100818

7. Gorbunova V, Seluanov A, Kennedy BK. The world goes bats: living longer and tolerating viruses. Cell Metab. 2020; 32: 31-43. doi.org/10.1016/j.cmet.2020.06.013

8. Hoyt JR, Kilpatrick AM, Langwig KE. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 2021; 19: 196-210. doi.org/10.1038/s41579-020-00493-5

9. Reusch C, Lozar M, Kramer-Schadt S, Voigt CC. Coastal onshore wind turbines lead to habitat loss for bats in Northern Germany. J Environ Manage. 2022; 310: 114715. doi.org/10.1016/j.jenvman.2022.114715

10. Frick WF, Kingston T, Flanders J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 2020; 1469: 5-25. doi.org/10.1111/nyas.14045

11. Kafash A, Ashrafi S, Yousefi M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environ Sci Pollut Res. 2022; 29: 25881-25891. doi.org/10.1007/s11356-021-17412-7

12. Altringham J, Kerth G. Morcegos e estradas. Gerald. Bats and roads. Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham. 2016; 35-62.

13. Schanzer S, Koch M, Kiefer A, Jentke T, Veith M, Bracher F, Bracher J, Müller C. Análise de resíduos de pesticidas e poluentes orgânicos persistentes em morcegos alemães. Chemosphere. 2022; 305: 135342. doi.org/10.1016/j.chemosphere.2022.135342

14. Sotero DF, Benvindo-Souza M, de Freitas RP, Silva DDM. Bats and pollution: Genetic approaches in ecotoxicology. Chemosphere. 2022; 307:135934. doi.org/10.1016/j.chemosphere.2022.135934

15. Theobald E, Hosken DJ, Foster P, Moyes K. Mines and bats: the impact of open-pit mining on bat activity. Acta Chiropt. 2020; 22: 157-166. doi.org/10.3161/15081109ACC2020.22.1.014

16. Zocche JJ, Leffa DD, Damiani AP, Carvalho F, Mendonça RÁ, dos Santos CEI, Boufleur LA, Dias JF, de Andrade VM. Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil. Environ. Res. 2010; 110: 684-691. doi.org/10.1016/j.envres.2010.06.003

17. Pedroso-Fidelis GS, Farias HR, Mastella GA, Boufleur-Niekraszewicz LA, Dias JF, Alves MC, Silveira PCL, Nesi RT, Carvalho F, Zocche JJ, Pinho RA. Pulmonary oxidative stress in wild bats exposed to coal dust: A model to evaluate the impact of coal mining on health. Ecotoxicol. Environ. Saf. 2020; 191: 110211. doi.org/10.1016/j.ecoenv.2020.110211

18. Sotero DF, Benvindo-Souza M, de Carvalho Lopes AT, de Freitas RMP, de Melo e Silva D. Damage on DNA and hematological parameters of two bat species due to heavy metal exposure in a nickel-mining area in central Brazil. Environ. Monit. Assess. 2023; 195(8): 1000. doi.org/10.1007/s10661-023-11526-w

19. Benvindo-Souza M, Sotero DF, Dos Santos CGA, de Assis RA, Borges RE, de Souza Santos LR, de Melo e Silva D. Genotoxic, mutagenic, and cytotoxic analysis in bats in mining area. Environ Sci Pollut Res. 2023; 30(40): 92095-92106. doi.org/10.1007/s11356-023-28861-7

20. Destro ALF, Gonçalves DC, da Silva Alves T, Gregório KP, da Silva VM, Santos VR, Castro OW, Baggio Filho H, Garbino GST, Gonçalves RV, Oliveira JM, Freitas MB. Iron and aluminum ore mining pollution induce oxidative and tissue damage on fruit-eating bats from the Atlantic Forest. J Hazard Mater. 2014; 465: 133285. doi.org/10.1016/j.jhazmat.2023.133285

21 Storz JF, Williams CF. Summer population structure of subalpine bats in Colorado. Southwest. Nat. 1996; 41(3): 322-324.

22. Diamond GF, Diamond JM. Bats and mines: evaluating Townsend’s big-eared bat (Corynorhinus townsendii) maternity colony behavioral response to gating. West. N. Am. Nat. 2014; 74(4): 416-426. doi.org/10.3398/064.074.0407

23. Thakare M, Randive K. Distinctive Bats Species in Abandoned Mines: Adventure Geotourism for Nature Enthusiasts. In: Randive K, Pingle S, Agnihotri A. (eds.) Innovations in Sustainable Mining. Earth and Environmental Sciences Library. Springer, Cham. 2021. doi.org/10.1007/978-3-030-73796-2_14

24. Porfirio G, Bordignon MO. Phyllostomid bats and their diets at Urucum massif, Mato Grosso do Sul, Brazil. Chiropt. Neotrop. 2013; 21(2): 1332-1337.

25. Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. Morcegos do Brasil: Guia de Campo. Rio de Janeiro: Technical Books. Londrina; 2013.

26. Hannibal W, Zortéa M, Calaça AM, Carmignotto AP, Bezerra AM, Carvalho HG, Bonvicino CR, Martins ACM, Aguia LMS, de Souza MB, Mattos I, Oliveira RF, Brito D, Silva DA, Guimães MA, Carmo EMB, Moreira, JC. Check list of mammals from Goiás, central Brazil. Biota Neotrop. 2021; 21. doi.org/10.1590/1676-0611-BN-2020-1173

27. MMA. Ministério do Meio Ambiente - Lista Oficial das Espécies da Fauna Ameaçadas de Extinção, 2022. [Internet]. 2024 November [cited November 04]. Available from https://drive.google.com/file/d/13H9_s1eWJgwczD0D1-v5ptpeHBVzcbdE/view

28. IUCN. The IUCN Red List of Threatened Species. Version 2022-1. [Internet]. 2024 November [cited November 04]. Available from: https://www.iucnredlist.org

29. Pereira MJR, Fonseca C, Aguiar LM. Loss of multiple dimensions of bat diversity under land-use intensification in the Brazilian Cerrado. HYSTRIX, 2018; 29(1): 25. doi.org/10.4404/hystrix-00020-2017

30. Zortéa M, D’arc FC. Diversity of three bat assemblages of Central Brazil. Mastozool. Neotrop. 2019; 26: 468-474. doi.org/10.31687/saremMN.19.26.2.0.09

31. da Silva JPA, Carvalho AR, de Oliveira Motta JA. Fauna de morcegos (Mammalia, Chiroptera) em cavernas do bioma Cerrado na região de Indiara (Goiás). Rev. Bras. Zoociênc. 2009; 11(3): 209-217.

32. Pina SM, Meyer CF, Zortéa M. A comparison of habitat use by phyllostomid bats (Chiroptera: Phyllostomidae) in natural forest fragments and Eucalyptus plantations in the Brazilian Cerrado. Chiropt. Neotrop. 2013; 19: 14-30.

33. Torres JM, dos Anjos EA, Ferreira CM. Frugivory by phyllostomid bats (Chiroptera, Phyllostomidae) in two cerrado urban remnants in Campo Grande, Mato Grosso do Sul. Iheringia. Iheringia, Sér. Zool. 2018; 108. doi.org/10.1590/1678-4766e2018002

34. Carvalho WD, Meyer CF, Xavier BDS, Mustin K, Castro IJD, Silvestre SM, Pathek DB, Capaverde Jr. UD, Hilário R, Toledo JJD. Consequences of replacing native savannahs with acacia plantations for the taxonomic, functional, and phylogenetic α-and β-diversity of bats in the Northern Brazilian Amazon. Front. Ecol. Evol. 2020; 8:609214.

35. Benvindo-Souza M, de Souza Santos LR, Elias Borges R, Alves de Assis R, de Melo e Silva D, Zortea M, Missel Pacheco S. Thousands of bats: A portrait of the chiropteran fauna of Palmas city, Central Brazil. Austral Ecol. 2021; 46(5): 876-879. doi.org/10.1111/aec.13032

36. Sperr EB, Caballero-Martínez LA, Medellin RA, Tschapka M. Seasonal changes in species composition, resource use and reproductive patterns within a guild of nectar-feeding bats in a west Mexican dry forest. J. Trop. Ecol. 2011; 27(2): 133-145. doi.org/10.1017/S0266467410000714

37. Ferreira DF, Rocha R, López-Baucells A, Farneda FZ, Carreiras JM, Palmeirim JM, Meyer CF. Season-modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 2017; 7(11): 4059-4071. doi.org/10.1002/ece3.3005

38. Cárdenas-Canales EM, Stockmaier S, Cronin E, Rocke TE, Osorio JE, Carter GG. Social effects of rabies infection in male vampire bats (Desmodus rotundus). Biol. Lett. 2022; 18: 20220298. doi.org/10.1098/rsbl.2022.0298

39. Beilke EA, O’Keefe JM. Bats reduce insect density and defoliation in temperate forests: An exclusion experiment. Ecology. 2022; e3903. doi.org/10.1002/ecy.3903

40. Aguiar LM, Bueno-Rocha ID, Oliveira G, Pires ES, Vasconcelos S, Nunes GL, Frizzas MR, Togni PH. Going out for dinner - The consumption of agriculture pests by bats in urban areas. PloS One 2021; 16:e0258066. doi.org/10.1371/journal.pone.0258066.

41. Zurcher AA, Sparks DW, Bennett VJ. Why the bat did not cross the road?. Acta Chiropt. 2010; 12(2): 337-340. doi.org/10.3161/150811010X537918

42. Oliveira HFM, Fandos G, Zangrandi PL, Bendini HD N, Silva DC, Muylaert RL, Marinho-Filho JS, Fonseca LM, Rufin P, Schwieder M, Domingos FMC. Crops, caves, and bats: deforestation and mining threaten an endemic and endangered bat species (Lonchophylla: Phyllostomidae) in the Neotropical savannas. HYSTRIX. 2022; 33(2): 158-166. doi.org/10.4404/hystrix-00541-2022

43. Carrasco-Rueda F, Loiselle BA, Frederick PC. Mercury bioaccumulation in tropical bats from a region of active artisanal and small-scale gold mining. Ecotoxicology. 2020; 29: 1032-1042. doi.org/10.1007/s10646-020-02195-3

Published

2024-12-23

Most read articles by the same author(s)