Mitochondrial DNA Marker for Genetic-Population Studies of Amazon Turtle (Podocnemis expansa Schweigger, 1812)

Authors

  • Maria Augusta Paes Agostini Universidade Federal do Amazonas , Brasil
  • Bárbara Beatriz de Sousa Rocha Universidade Católica de Brasília, UCB-DF, Brasil
  • Rafael Antônio Machado Balestra Instituto Chico Mendes de Conservação da Biodiversidade , Brasil
  • Samuel Rezende Paiva Universidade Federal do Espirito Santo , Brasil

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v12i1.1938

Keywords:

Conservation , genetic diversity, chelonian

Abstract

Chelonians are long-living animals and few of their individuals reach adulthood. In addition to the low natural recruitment rate, several anthropic actions have made it difficult to maintain the populations of this group. Disordered exploitation to supply the illegal trade has been the most harmful, especially in Podocnemis expansa, because it is a species highly appreciated in Amazonian cuisine, and very vulnerable in the reproductive period, a time of greatest capture. Its history of exploitation caused a population imbalance in several locations in the Amazon, as could be seen during the almost three decades of monitoring in important spawning sites in conservation units of the Araguaia River. The present study developed molecular markers with the objective of testing and comparing them with primers already used, in addition to evaluating the genetic diversity and population structure of P. expansa in the Tocantins-Araguaia basin. For this, cutaneous tissue was collected from 120 specimens sampled in three localities in the middle and sub-middle Araguaia river, compared with mitochondrial DNA sequences from 22 localities. The control region of mitochondrial DNA of P. expansa is difficult to amplify, and the pair of primers from other studies did not amplify with the biological material used in this work, showing the efficiency of the molecular marker made. The use of these primers will facilitate field sampling, although the use of skin tissue confers a smaller amount of DNA extracted when compared to blood tissue, their collection can be applied more widely and frequently as biological material in monitoring and management programs of chelonians, facilitating genetic research with these animals. As for genetic evaluation, panmixia was characterized in the Tocantins-Araguaia basin and low genetic diversity, agreeing with data of the species. If conservation strategies are not efficient in reversing a probable genetic drift process, significant population damage may occur, nodded ly regarding the adaptive issues of the species.

References

Agostini MAP. 2016. Padrões genético-populacionais do "tracajá" Podocnemis unifilis (Troschel, 1848) (TESTUDINES: PODOCNEMIDIDAE) na Amazônia brasileira. Dissertação (Mestrado em Diversidade Biológica). Universidade Federal do Amazonas. 40p.

Amaral CRL, Brito P M, Silva DA, Carvalho EF. 2013. A new cryptic species of South American freshwater pufferfish of the genus Colomesus (Tetraodontidae), based on both morphology and DNA data. PLoS One, 8(9): e74397.

Andrade PCM. 2015. Manejo Comunitário de Quelônios (Família Podocnemididae - Podocemis unifilis, P. sextuberculata, P.expansa, P.erythrocephala) no médio rio Amazonas e Juruá. Tese de Doutorado BADPI/INPA, Manaus. 336p.

Aquino SS, Latrubesse EM, Souza-Filho EE. 2009. Caracterização Hidrológica e Geomorfológica dos Afluentes da Bacia do Rio Araguaia. Revista Brasileira de Geomorfologia, 10(1): 43-54.

Arif IA, et al. 2011. DNA marker technology for wildlife conservation. Saudi J Biol Sci., 18: 219-225.

Balestra RAM (Org.). 2016. Manejo conservacionista e monitoramento populacional de quelônios amazônicos. 1ª ed. CNI - Centro Nacional de Monitoramento e Informações Ambientais, Brasília: Ibama, 137p.

Balestra, RAM et al. 2016. Roteiro para inventários e monitoramentos de quelônios continentais. Biodiversidade Brasileira, v. 1, p. 114-152.

Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. Jan;16(1):37-48. doi: 10.1093/oxfordjournals.molbev.a026036. PMID: 10331250.

Bezerra MF, Lacerda LD, Lima EHSM, Melo MTD. 2013. Monitoring mercury in green sea turtles using keratinized carapace fragments (scutes). Marine pollution Bulletin. 77(1-2): 424-427.

Eisemberg CC, Vogt RC, Balestra RAM, Reynolds SJ, Christian KA. 2019. Don't put all eggs in one basket - Lessons learned from the largest scale and longest-term wildlife conservation program in the Amazon Basin. Biol Conserv. 238: 108182.

Fagundes CK, Vogt RC, De Marco Jr. P. 2015. Testing the efficiency of protected areas in the Amazon for conserving freshwater turtles. Divers Distrib. 22(2): 123-135.

Fagundes CK, Vogt RC, de Souza RA, De Marco Jr P. 2018. Vulnerability of turtles to deforestation in the Brazilian Amazon: indicating priority areas for conservation. Biol. Conserv. 226: 300-310.

Ferrara C, Fagundes CK, Morcatty T, Vogt RC. 2017. Quelônios Amazônicos: Guia de identificação e distribuição. Manaus, Brazil: Wildlife Conservation Society Brasil. 280p.

Ferri V. 2002. Turtles & Tortoises: A Firefly Guide. Firefly Books. 256p.

Frankham R, Ballou JD, Briscoe DA. 2008. Fundamentos de Genética da Conservação. Ribeirão Preto, SP, SBG (Sociedade Brasileira de Genética). 229p.

Hrbek T, da Silva VMF, Dutra N, Gravena W, Martin AR, Farias IP. 2014. A new species of river dolphin from Brazil or: how little do we know our biodiversity? PLoS One. 9(1): e83623.

Hrbek T, Farias IP. 2008. The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes). Genetics and Molecular Biology. Journal Article. 31(1, Suppl.): 293-302.

Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. 482p.

Iyengar A. 2014. Forensic DNA analysis for animal protection and biodiversity conservation: a review. J Nat Conserv., 22: 195-205.

Kocher TD, et al. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci., USA, 86: 6196-6200.

Kong, S, Sánchez-Pacheco, S, Murphy, R. 2015. On the use of median-joining networks in evolutionary biology. Cladistics. 32. n/a-n/a. 10.1111/cla.12147.

Kumar S, Dudley J, Neim M, Tamura K. 2008. Mega: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9: 299-306.

Lacava RV, Balestra RAM (Orgs.). 2019. Plano de Ação Nacional para Conservação dos Quelônios Amazônicos. CNI - Centro Nacional de Monitoramento e Informações Ambientais, Brasília: Ibama, 192p.

Librado P, Rozas J. Dna SP. 2009. V5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452.

Mader DR (ed). 2006. Reptile Medicine and Surgery, 2nd ed.: Elsevier. St. Louis.

McArthur S, Wilkinson R, Meyer J (eds.). 2004. Medicine and Surgery of Turtles and Tortoises.: Blackwell Science Ltd. Cambridge, MA.

Martin AP & Palumbi SR. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences, 90(9): 4087-4091.

Maués MS, Ianella P. 2016. Inventário de Recursos Genéticos Animais da Embrapa. Editores técnicos. Embrapa. Brasília, DF. 108p.

Michels J, Vargas-Ramirez M. 2018. Red-headed Amazon River Turtles in Venezuela and Colombia: population separation and connection along the famous route of Alexander von Humboldt. Zoology, 130: 67-78.

Navarro, EA. 2013. Dicionário de tupi antigo: a língua indígena clássica do Brasil. São Paulo. Global. 544p.

Norris D, Michalski F, Gibbs JP. 2018. Beyond harm's reach? Submersion of river turtle nesting areas and implications for restoration actions after Amazon hydropower development. PeerJ, 6: e4228.

Oliveira JA, Farias IP, Costa GC, Werneck FP. 2019. Model-based riverscape genetics: disentangling the roles of local and connectivity factors in shaping spatial genetic patterns of two Amazonian turtles with different dispersal abilities. Evolutionary Ecology, 33: 273-298.

Pantoja-Lima J, Aride PHR, Oliveira AT, Felix-Silva D, Pezzuti JCB, Rebêlo GH. 2014. Chain of commercialization of Podocnemis spp. turtles (Testudines: Podocnemididae) in the Purus River, Amazon basin, Brazil: current status and perspectives. Journal of Ethnobiology and Ethnomedicine, 10:8.

Pearse DE, Arndt AD, Valenzuela N, Miller BA, Cantarelli VH, Sites JW. 2006 Estimating population structure under non-equilibrium conditions in a conservation context: continent- wide population genetics of the giant Amazon river turtle Podocnemis expansa (Chelonia, Podocnemidae). Molecular Ecology, 15: 985-1006.

Pignati MT, Pezzuti JCB. 2012. Alometria reprodutiva de Podocnemis unifilis (Testudines: Podocnemididae) na várzea do baixo rio Amazonas, Santarém, Pará, Brasil. Iheringia, Sér. Zool., 102(1): 48-55.

Pineda-Catalan O, et al. 2012. Conservation genetics of harvested river turtles, Podocnemis expansa and Podocnemis unifilis, in the Peruvian Amazon: All roads lead to Iquitos. Mitochondrial DNA, 23(3): 230-238.

Santos FJM, Luz VLF, Peña AP, Júnior SGF, Pires RAP. 2008. Relação dos Squamata (Reptilia) da Área de Proteção Ambiental Meandros do Rio Araguaia, Brasil. Goiânia, 35(3): 401-407.

Santos RC, et al. 2016. Testing the Effects of Barriers on the Genetic Connectivity in Podocnemis erythrocephala (Red-Headed Amazon River Turtle): Implications for Management and Conservation. Chelonian Conservation and Biology, 15(1): 12-22.

Starkey DE, et al. 2003. Molecular systematics, phylogeography, and the effects of Pleistocene glaciation in the painted turtle (Chrysemys picta) complex. Evolution, 57: 119-128.

Stewart DT, Baker AJ. 1994. Evolution of mtDNA Dloop sequences and their use in phylogenetic studies of shrews in the subgenus Otrisorex (Sorex: Soricidae: Insectivora). Molecular Phylogenetics and Evolution, 3:38-46.

Turtle Taxonomy Working Group [Rhodin AGJ et al.]. 2017. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (8th Ed.). In: Rhodin AGJ et al. (Eds.). Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. 8 ed. Chelonian Research Monographs, 7:1-292. doi: 10.3854/crm.7.checklist.atlas.v8.2017.

Valenzuela N, Botero R, Martinez E. 1997. Field study of sex determination in Podocnemis expansa from Colombian Amazonia. Herpetologica, 53(3):390-398.

Valenzuela, N. 2001a. Maternal effects on life-history traits in the Amazonian giant river turtle Podocnemis expansa. Journal of Herpetology, Athens, 35(3): 368-378.

Valenzuela. N. 2001b. Genetic differentiation among nesting beaches in the highly migratory giant river turtle (Podocnemis expansa) from Colombia. Herpetologica, 57: 48-57.

Vanzolini PE. 1967. Notes on the nesting behaviour of Podocnemis expansa in the Amazon Valley (Testudines, Pelomedusidae). Papéis Avulsos de Zoologia, 20: 191-215.

Vanzolini PE. 2003. On clutch size and hatching success of the South American turtles Podocnemis expansa (Schweigger, 1812) and P. unifilis Troschel, 1848 (Testudines, Podocnemididae). Anais da Academia Brasileira de Ciências 75(4): 415-430.

Vargas-Ramírez M, Castaño-Mora OV, Fritz U. 2008. Molecular phylogeny and divergence times of ancient South American and Malagasy river turtles (Testudines: Pleurodira: Podocnemididae). Org. Divers. Evol., 8: 388-398.

Vargas-Ramírez M, Stuckas H, Castanõ-Mora OV, Fritz U. 2012. Extremely low genetic diversity and weak population differentiation in the endangered Colombian river turtle Podocnemis lewyana (Testudines: Podocnemididae). Conserv Genet., 13: 65-77.

Viana MNS, et al. 2017. Population genetic structure of the threatened Amazon River turtle Podocnemis sextuberculata (Testudines, Podocnemididae). Chelonian Conserv Biol., 16(2): 128-138.

Vogt RC. 2008. Tartarugas da Amazônia. Wust Ediciones, Lima. 104p.

Published

2022-01-18

Issue

Section

Programa Institucional de Bolsas de Iniciação Científica - Pibic/ICMBio

Most read articles by the same author(s)