Efecto de distintos desórdenes antrópica en ensamblajes de murciélagos en ecotono Cerrado-Amazónia
DOI:
https://doi.org/10.37002/biodiversidadebrasileira.v14i1.2393Palabras clave:
fuego, silvicultura, impacto ambiental, NeotrópicoResumen
La expansión de las fronteras agrícolas es el principal impulsor de la pérdida de hábitats naturales en el mundo y será la principal causa de los impactos sobre la biodiversidad hasta el año 2100, provocando la gran disminución de especies en los trópicos. Debido a la gran magnitud y velocidad de pérdida de hábitat en la región del llamado "arco de la deforestación" (especialmente en el estado de Mato Grosso), es fundamental analizar los efectos de diferentes matrices y perturbaciones como el fuego sobre la biota de los bosques remanentes. En este contexto, los murciélagos son excelentes bioindicadores porque responden a una amplia gama de cambios antrópicos en la calidad del hábitat. Por lo tanto, el presente estudio tiene como objetivo probar las diferencias en los ensamblajes de murciélagos en fragmentos de bosque bajo diferentes perturbaciones (incendios y diferentes límites fronterizos con eucaliptos y árboles de caucho). En 2012, los murciélagos fueron capturados con redes de niebla seis noches, en seis sitios y bajo dos tratamientos: 3 fragmentos de bosque bajo diferentes condiciones (incendio, eucalipto, plantación de caucho) y fragmentos de control. Se registraron 83 murciélagos de 21 especies. Este estudio brinda indicaciones conservacionistas de que las plantaciones de caucho funcionan mejor como refugio y corredor de fauna para los murciélagos que los árboles de eucalipto, que tienen copas muy abiertas. Además, también se puede inferir que el fuego experimental realizado 2 años antes del muestreo tuvo un impacto medio sobre la quiropterofauna, que fue menos impactada que en las zonas de eucalipto. Finalmente, se recomienda que los monocultivos de eucalipto o las plantaciones de caucho inviertan en estrategias de mantenimiento del sotobosque para que sean más atractivos para la fauna.
Citas
Giannini NP, Kalko EKV. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos. 2004 May; 105(2): 209-20.
Fleming TH. The short-tailed fruit bat, a study in plant-animal interactions. The University of Chicago Press, Chicago, 365 p. 1988.
Medellin RA, Gaona O. Seed Dispersal by Bats and Birds in Forest and Disturbed Habitats of Chiapas, Mexico1. Biotropica. 1999 Sep; 31(3): 478-85.
Thies W, Kalko EKV. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea(Phyllostomidae). Oikos 2004 Feb ;104(2): 362-76.
Patterson BD, Willig MR e Stevens RD. Trophic strategies, niche partitioning, and patterns of ecological organization. In: Kunz, T.H. e Fenton, M.B. (Eds), Bat ecology. University of Chicago Press, Chicago, Illinois. 2003: 536-579.
Kalka MB, Smith AR, Kalko EKV. Bats Limit Arthropods and Herbivory in a Tropical Forest. Science. 2008 Apr 4;320(5872): 71-1.
Lobova, T.A., C.K. Geiselman & S.A. Mori. 2009. Seed Dispersal by Bats in the Neotropics. New York, NY: Botanical Garden Press.
Rex K, Kelm DH, Wiesner K, Kunz TH e Voigt CC. Species richness and structure of three Neotropical bat assemblages. Biological Journal of the Linnean Society. 2008 Jun 28;94(3): 617-29.
Fahr J, Kalko EKV. Biome transitions as centres of diversity: habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography. 2010 Aug 13;34(2): 177-95.
Silva CR, Martins ACM, de Castro IJ, Bernard E, Cardoso EM, dos Santos Lima D, et al. Mammals of Amapá State, Eastern Brazilian Amazonia: a revised taxonomic list with comments on species distributions. Mammalia. 2013 Jan 1; 77(4).
Sampaio R, Röhe F, Rylands AB. Diversity of primates and other mammals in the middle Purus basin in the Brazilian Amazon. Mammalia. 2018 Nov 27;82(6): 565-79.
Martins ACM, Oliveira HFM, Zimbres B, Sá-Neto RJ, Marinho-Filho J. Environmental heterogeneity and water availability shape the structure of phyllostomid bat assemblages (Mammalia: Chiroptera) in the northeastern Amazon forest. Forest Ecology and Management. 2022 Jan; 504: 119863.
Bonaccorso FJ, Gush TJ. Feeding Behaviour and Foraging Strategies of Captive Phyllostomid Fruit Bats: An Experimental Study. Journal of Animal Ecology [Internet]. 1987 [cited 2019 Nov 15]; 56(3): 907-20. Available from: https://www.jstor.org/stable/4956?seq=1#page_scan_tab_contents
Bianconi GV, Mikich SB, Pedro WA. Diversidade de morcegos (Mammalia, Chiroptera) em remanescentes florestais do município de Fênix, noroeste do Paraná, Brasil. Revista Brasileira de Zoologia. 2004 Dec; 21(4): 943-54.
Emmons L.H. e Feer F. Neotropical rainforest mammals: a field guide (Second edition). Chicago, The University of Chicago Press, XVI + 307p. 1997.
Peracchi AL, Lima IP, Reis NR, Nogueira MR, Ortêncio Filho H. Ordem Chiroptera. In: Reis N R, Peracchi AL, Pedro WA, Lima IP (Eds.). Mamíferos do Brasil. 2 ed. Londrina. 2011: 155-234.
Fenton MB, Acharya L, Audet D, Hickey MBC, Merriman C, Obrist MK, et al. Phyllostomid Bats (Chiroptera: Phyllostomidae) as Indicators of Habitat Disruption in the Neotropics. Biotropica [Internet]. 1992 [cited 2020 Dec 2];24(3):440-6. Available from: https://www.jstor.org/stable/2388615?seq=1
McNab BK. The Structure of Tropical Bat Faunas. Ecology. 1971 Mar;52(2): 352-8.
Bredt A, Uieda W, e Pedro WA. Plantas e morcegos: na recuperação de áreas degradadas e na paisagem urbana. Brasília: Rede de Sementes do Cerrado. 273 p. 2012.
Bordignon MO, Shapiro JT. Bat diversity in the western Brazilian Pantanal. Mammalia. 2017 Aug 25; 82(3): 256-65.
Sanchez-Cordero Vi. Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography. 2001 Jan;10(1): 63-76.
Clarke FM, Rostant LVE, Racey PA. Life after logging: post-logging recovery of a neotropical bat community. Journal of Applied Ecology. 2005 Apr 18; 42(2): 409-20.
Jones G, Jacobs D, Kunz T, Willig M, Racey P. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research [Internet]. 2009 Jul 9; 8(1-2): 93-115. Available from: http://www.bu.edu/cecb/files/2009/08/jones2009.pdf
Fahrig L. Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics. 2003 Nov; 34(1): 487-515.
Sala OE. Global Biodiversity Scenarios for the Year 2100 . Science. 2000 Mar 10; 287(5459): 1770-4.
Andrade JCS. Conflito, cooperação e convenções: análise das estratégias socioambientais para a gestão sustentável das plantações de eucalipto da Aracruz Celulose S.A. Revista Organizações e Sociedade. Salvador, v. 8. 2001.
Borges, PHDC. Períodos de controle de plantas de sub-bosque na cultura do eucalipto. Universidade Estadual Paulista (Unesp), Available at: <http://hdl.handle.net/11449/235533>.2022.
Barlow J, Gardner TA, Araujo IS, Avila-Pires TC, Bonaldo AB, Costa JE, et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences. 2007 Nov 14;104(47): 18555-60.
Yue S, Brodie JF, Zipkin EF, Bernard H. Oil palm plantations fail to support mammal diversity. Ecological Applications. 2015 Dec;25(8):2285-92.
Gilroy JJ, Edwards FA, Medina Uribe CA, Haugaasen T, Edwards DP. Surrounding habitats mediate the trade-off between land-sharing and land-sparing agriculture in the tropics. Kleijn D, editor. Journal of Applied Ecology. 2014 Jul 21;51(5): 1337-46.
Marques JRB, Virgens Filho ADC, Reis EL, e Afonso JM. 2012. Sistema agroflorestal (SAF) com seringueira, cacaueiro e cultivos alimentares. Ilhéus: Ceplac/Cenex.
Medhi R, Chetry D, Bhattacharjee PC, Patiri BN. Status of Trachypithecus geei in a Rubber Plantation in Western Assam, India. International Journal of Primatology. 2004 Dec; 25(6): 1331-7.
Campbell-Smith G, Campbell-Smith M, Singleton I, Linkie M. Raiders of the Lost Bark: Orangutan Foraging Strategies in a Degraded Landscape. Gratwicke B, editor. PLoS ONE. 2011 Jun 22; 6(6): e20962.
Harich F. Mammalian wildlife diversity in rubber and oil palm plantations. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2016 Jul 1; 11(020).
Miranda HS, Bustamante MM e Miranda AC. The Fire Factor. In the cerrados of Brazil Columbia University Press. 2002 Dec 31; 51-68.
Hoffmann WA e Moreira AG. The role of fire in population dynamics of woody plants. In: The Cerrados of Brazil: ecology and natural history of a neotropical savanna. (Oliveira, P.S. e Marquis, R.J., ed.). Columbia University Press, New York. p 159-177. 2002.
Henriques RPB, Bizerril MXA e Palma, ART. Changes in small mammal populations after fire in a patch of unburned cerrado in Central Brazil. Mammalia. 2000; 64(2).
Briani DC, Palma ART, Vieira EM, Henriques RPB. Post-fire succession of small mammals in the Cerrado of central Brazil. Biodiversity and Conservation. 2004 May; 13(5): 1023-37.
Oliveira HFM de, Aguiar LMS. The response of bats (Mammalia: Chiroptera) to an incidental fire on a gallery forest at a Neotropical savanna. Biota Neotropica. 2015; 15(4).
Leite M. Fogo contrafogo: Queimada controlada na Amazônia procura entender impacto sobre fauna e flora. Revista FAPESP, ed. 103. Available from: https://revistapesquisa.fapesp.br/fogo-contra-fogo. 2004.
Fisher JT, Wilkinson L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal Review 2005 May; 35(1), 51-81.
Loeb SC, Waldrop TA. Bat activity in relation to fire and fire surrogate treatments in southern pine stands. Forest Ecology and Management. 2008 May; 255(8-9): 3185-92.
Boyles JG, Aubrey DP. Managing forests with prescribed fire: Implications for a cavity-dwelling bat species. Forest Ecology and Management. 2006 Feb; 222 (1-3):108-15.
Silvis A. The Response of Bats to Shelterwood Harvest and Prescribed Fire. 2011. Available from: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=osu1299601292
Brando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology. 2011 Sep 23;18(2): 630-41.
Gonçalves PDS, Bataglia OC, Ortolani AA, Fonseca FDS. Manual de Heveicultura para o Estado de São Paulo, Série Tecnologia APTA. Campinas: Instituto Agronômico (IAC). 2001
Ribeiro N, Sitoe A, Guedes B, Staiss C. Manual de silvicultura tropical. Maputo: Universidade Eduardo Mondlane. 2002. Available from: https://www.bibliotecaagptea.org.br/agricultura/silvicultura/livros/MANUAL%20DE%20SILVICULTURA%20TROPICAL.pdf
Gardner AL. Mammals of South America, Volume 1 Marsupials, Xenarthrans, Shrews, and Bats. Chicago University Of Chicago Press Ann Arbor, Michigan Proquest; 2014.
Lim BK, e Engstrom MD. Bat community structure at Iwokrama Forest, Guyana. Journal of Tropical Ecology. 2001 Sep; 17(5): 647-65.
Diaz MM, Solari S, Aguirre LF, Aguiar L, e Barquez RM. Clave de identificación de los murciélagos de Sudamérica/ Chave de identificação dos morcegos da América do Sul. ción Especial Nro, 2, 160. 2016.
Straube FC, e Bianconi GV. Sobre a grandeza e a unidade utilizada para estimar o esforço de captura com utilização de redes-de-neblina. Chiroptera Neotropical, 2002; 8(1-2): 150-152.
Findley J. Bats: a community perspective. Cambridge University Press, Cambridge, U.K. 1993.
Cadotte MW, Cardinale BJ, Oakley TH. Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences. 2008 Nov 4; 105(44): 17012-7.
Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Currents [Internet]. 2011 Feb 4; 3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038382/
Zar JH. Biostatistical Analysis. 5th Edition, Prentice-Hall/Pearson, Upper Saddle River, 2010: 944 p.
Kalko EKV, Herre EA, Handley CO. Relation of fig fruit characteristics to fruit-eating bats in the New and Old World tropics. Journal of Biogeography. 1996 Jul; 23(4): 565-576.
Kalko EKV. Organization and diversity of tropical bat communities through space and time. Zoology,1998; 101: 281-297.
Lopez-Gonzalez C. Ecological zoogeography of the bats of Paraguay. Journal of Biogeography. 2004 Jan; 31(1): 33-45.
Martins ACM, Willig MR, Presley SJ, Marinho-Filho J. Effects of forest height and vertical complexity on abundance and biodiversity of bats in Amazonia. Forest Ecology and Management. 2017 May; 391: 427-35.
Righi CA e Bernardes MS, ed. Cadernos da Disciplina Sistemas Agroflorestais. Piracicaba: Série Difusão, 2018; 2: 208.
Harvey CA, González Villalobos JA. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiversity and Conservation. 2007 May 31; 16(8): 2257-92.
Bendell JF. Effects of Fire on Birds and Mammals. Elsevier eBooks. 1974 Jan 1; 73-138.
Silva DR, Gouveia KRRO, Xavier EG, Marques IC e Dos Santos SHA. Impactos ambientais condicionados a heveicultura e seus segmentos. In Congresso Interdisciplinar-ISSN: 2595-7732. 2017.
Myers P e Wetzel RM. Systematics and zoogeography of the bats of the Chaco Boreal. 1983.Available from: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/56409/MP165.pdf
Aguirre LF. Structure of a neotropical savanna bat community. Journal of Mammalogy. 2002 Aug 1; 83(3): 775-84.
Phillips OL, Rose S, Mendoza, AM e Vargas PN. Resilience of Southwestern Amazon Forests to Anthropogenic Edge Effects. Conservation Biology. 2006 Dec;20(6): 1698-710.
Vasconcelos HL, Vilhena JMS, Magnusson WE, Albernaz ALKM. Long-term effects of forest fragmentation on Amazonian ant communities. Journal of Biogeography. 2006 Aug; 33(8): 1348-56.
Meyer CF, Struebig MJ, Willig MR. Responses of tropical bats to habitat fragmentation, logging, and deforestation. In: Voigt C, Kingston CC, editors. Bats in the anthropocene: conservation of bats in a changing world. Berlin: Springer; 2016: 63-103.
Carvalho WD, Mustin K, Farneda FZ, de Castro IJ, Hilário RR, Martins ACM, et al. Taxonomic, functional and phylogenetic bat diversity decrease from more to less complex natural habitats in the Amazon. Oecologia. 2021 Aug 8; 197(1): 223-39.
Carvalho WD, Meyer CFJ, Xavier B da S, Mustin K, Castro IJ de, Silvestre SM, et al. Consequences of Replacing Native Savannahs With Acacia Plantations for the Taxonomic, Functional, and Phylogenetic α- and β-Diversity of Bats in the Northern Brazilian Amazon. Frontiers in Ecology and Evolution. 2020 Dec 14;8.
Colombo GT, Di Ponzio R, Benchimol M, Peres CA, Bobrowiec PED. Functional diversity and trait filtering of insectivorous bats on forest islands created by an Amazonian mega dam. Functional Ecology. 2022 Jul 5.
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Os autores mantêm os direitos autorais de seus artigos sem restrições, concedendo ao editor direitos de ção não exclusivos.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Os artigos estão licenciados sob uma licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0). O acesso é livre e gratuito para download e leitura, ou seja, é permitido copiar e redistribuir o material em qualquer mídia ou formato.