Fire regime effects on cerrado vegetation in the Emas National Park: ideas for diversity conservation

Authors

  • Danilo Muniz Silva Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil
  • Priscilla de Paula Loiola Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil
  • Natalia Bianca Rosatti Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil
  • Igor Aurélio Silva Universidade Estadual de Campinas/Unicamp, Departamento de Biologia Vegetal, Instituto de Biologia/IB, Rua Monteiro Lobato 255, CP 6109, Campinas, SP, Brasil
  • Marcus Vinicius Cianciaruso Universidade Federal de Goiás/UFG, Departamento de Ecologia/DE, Rodovia Goiânia – Neropólis, km 13, CP 131, Goiânia, GO, Brasil
  • Marcos Antônio Batalha Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v1i2.136

Keywords:

functional diversity, management, phylogenetic diversity, plant biomass, soil

Abstract

Fire regime effects on cerrado vegetation in the Emas National Park: ideas for diversity conservation). Fire is an important evolutionary agent that can cause floristic, phylogenetic, and functional changes in cerrado plant communities, altering the composition of the soil and modifying interspecific interactions. Here, we discuss the effects of fire on cerrado vegetation and suggest actions for reserve management. With particular emphasis on research in the Emas National Park, in savanna physiognomy, we compiled the following results: in higher frequencies, annual or biennial burnings, there are phenotypic grouping, decreased competition, reduced plant biomass, and soil enrichment; in lower frequency, without burnings for 12 years, there are increased competition and higher accumulation of dry biomass. Furthermore, different fire regimes support different floristic compositions, with groups of herbaceous and wood species unique to each regime. Therefore, we suggest that a mosaic of different fires regimes should be kept and that areas without fire for many years should be avoided

Author Biographies

Danilo Muniz Silva, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Priscilla de Paula Loiola, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Natalia Bianca Rosatti, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Igor Aurélio Silva, Universidade Estadual de Campinas/Unicamp, Departamento de Biologia Vegetal, Instituto de Biologia/IB, Rua Monteiro Lobato 255, CP 6109, Campinas, SP, Brasil

Departamento de Biologia Vegetal, Universidade Estadual de Campinas

Marcus Vinicius Cianciaruso, Universidade Federal de Goiás/UFG, Departamento de Ecologia/DE, Rodovia Goiânia – Neropólis, km 13, CP 131, Goiânia, GO, Brasil

Departamento de Ecologia, Universidade Federal de Goiás

Marcos Antônio Batalha, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

References

Beerling, D.J. & Osborne, C.P. 2006. The origin of the savanna biome. Global Change Biology, 12(11): 2023-2031.

Bond, W.J. & Midgley, J.J. 1995. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos, 73(1): 79–85.

Bond, W.J. & Midgley, J.J. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution, 16(1): 45-51.

Bond, W.J. & Keeley, J.E. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20(7): 387-394.

Bond, W.J.; Midgley, G.F. & Woodward, F.I. 2003. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 9(7): 973-982.

Bond, W.J.; Woodward, F.I. & Midgley, G.F. 2005. The global distribution of ecosystems in a world without fire. New Phytologist, 165(2): 525-538.

Bourlière, F. & Hadley, M. 1983. Present-day savannas: an overview, p. 1-17. In: Goodall, D.W. (org.) Ecosystems of the world – tropical savannas. Elsevier. 17p.

Bowman, D.M.J.S. 1998. The impact of Aboriginal landscape burning on the Australian biota. New Phytologist, 140(3): 385-410.

Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.; Anthelme, F.; Armas, C.; Coll, L.; Corcket, E.; Delzon, S.; Forey, E.; Kikvidze, Z.; Olofsson, J.; Pugnaire, F.; Quiroz, C.L.; Saccone, P.; Schiffers, K.; Seifan, M.; Touzard, B. & Michalet, R. 2008. Facilitation in plant communities: the past, the present and the future. Journal of Ecology, 96(1): 18-34.

Brooks, M.L.; D’Antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M. & Pyke, D. 2004. Effects of invasive alien plants on fire regimes. Bioscience, 54(7): 677-688.

Canales, J.; Trevisan, M.C.; Silva, J.F.; Caswell, H. 1994. A demographic study of an annual grass (Andropogon brevifolius Schwartz) in burnt and unburnt savanna. Acta Oecologica, 15(3): 261-274.

Cerling, T.E.; Harris, J.M.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V. & Ehleringe, J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature, 389:153-158.

Chase, J.M. 2003. Community assembly: when should history matter? Oecologia, 136(4): 489-498.

Christin, P.A.; Besnard, G.; Samaritani, E.; Duvall, M.R.; Hodkinson, T.R.; Savolainen, V. & Salamin, N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Current Biology, 18(1): 37-43.

Carvalho, R.A.; Cianciaruso, M.V.; Trindade-Filho, J.; Sagnori, M.D. & Loyola, R.D. 2010. Drafting a blueprint for functional and phylogenetic diversity conservation in the Brazilian Cerrado. Natureza & Conservação, 8(2):171-176.

Cianciaruso, M.V.; Silva, I.A. & Batalha, M.A. 2009. Diversidades filogenética e funcional: novas abordagens para a ecologia de comunidades. Biota Neotropica, 9(3): 93-103.

Cianciaruso, M.V.; Silva, I.A. & Batalha, M.A. 2010. Aboveground biomass of functional groups in the ground layer of savannas under different fire frequencies. Australian Journal of Botany, 58(3): 169-174.

Cooke, R. 1998. Human settlement of central America and northernmost South America (14,000–8000 BP). Quaternary International, 49-50: 177-190.

Coutinho, L.M. 1978. O conceito de Cerrado. Revista Brasileira de Botânica, 1(1): 17-23.

Coutinho, L.M. 1990. Fire in the ecology of the Brazilian cerrado. In: Goldammer, J.G. (ed.). Fire in the tropical biota. Springer. 22p.

França, H., M.B. Ramos-Neto, A. Setzer. 2007. O fogo no Parque Nacional das Emas. Instituto do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). 140p.

Fukami, T.; Bezemer, T.M.; Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8(12): 1283-1290.

Gidon, N. & Delibrias, G. 1986. Carbon-14 dates point to man in the Americas 32,000 years ago. Nature, 321: 769-771.

Gottsberger, G. & Silberbauer-Gottsberger, I. 2006. Life in the cerrado: a South American tropical seasonal vegetation. Vol. 1. Origin, structure, dynamics and plant use. Reta Verlag. 277p.

Govender, N.; Trollope, W.S.W. & van Wilgen, B.W. 2006. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43(4): 748–758.

Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons. 456 p. Hoffmann, W.A. 1996. The effects of fire and cover on seedling establishment in a neotropical savanna. Journal of Ecology, 84(3):383– 393.

Hoffmann, W.A. 1998. Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. Journal of Applied Ecology, 35(3):422–433.

Hoffmann, W.A. 2002. Direct and indirect effects of fire on radial growth of cerrado savanna trees. Journal Tropical Ecology, 18(1):137–142.

Hoffmann, W.A.; Adasme, R.; Haridasan, M.; Carvalho, M.T.; Geiger, E.L.; Pereira, M.A.B.; Gotsch, S.G. & Franco, A.C. 2009. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology, 90(5): 1326-1337.

Köppen, W. 1931. Grundriss der Klimakunde. Gruyter. 388p.

Lamb, E.G.; Kembel, S.W. & Cahill Jr., J.F. 2009. Shoot, but not root, competition reduces community diversity in experimental mesocosms. Journal of Ecology, 97(1): 155-163.

Latorre, C.; Quade, J. & McIntosh, W.C. 1997. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas. Earth and Planetary Science Letters, 146: 83-96.

Ledru, M.P. 2002. Late Quaternary history and evolution of the cerrados as revealed by palynological records, p. 33-50. In: Oliveira, P.S. & Marquis, R.J. (orgs.). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press. 424p.

Lieberman, M. & Lieberman, D. 2007. Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity. Oikos, 116(3): 377-386.

Loiola, P.P.; Cianciaruso, M.V.; Silva, I.A. & Batalha, M.A. 2010. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora, 205(10): 674-681.

May, R.M. 1990. Taxonomy as destiny. Nature, 347: 129-130.

Milberg, P.; Lamont, B.B. & Perez-Fernandez, M.A. 1999. Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 145(1):125–132.

Miranda, H.S.; Bustamante, M.M.C. & Miranda A.C. 2002. The fire factor, p. 51-68. In: Oliveira, P.S. & Marquis, R.J. (orgs.). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press. 424p.

Moreira, A.G. 2000. Effects of fire protection on savanna structure in Central Brazil. Journal of Biogeography, 27(4): 1021-1029.

Oliveira-Filho, A.T. & Ratter, J.A. 1995. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany, 52(2): 141-194.

Pausas, J.G. & Verdú, M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos, 109(1): 196-202.

Pausas, J.G. & Verdú, M. 2008. Fire reduces morphospace occupation in plant communities. Ecology, 89(8): 2181-2186.

Perry, G.L.W.; Enright, N.J.; Miller, B.P. & Lamont, B.B. 2009. Nearest-neighbour interactions in species-rich shrublands: the roles of abundance, spatial patterns and resources. Oikos, 118(2): 161-174.

Petchey, O.L. & Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters, 9(6): 741-758.

Pivello, V.R.; Oliveras, I; Miranda, H.S.; Haridasan, M.; Sato, M.N. & Meirelles, S.T. 2010. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant and Soil, 337(1-2): 111–123.

Prinzing, A.; Durka, W.; Klotz, S. & Brandl, R. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London B, 268: 2383-2389.

Ramos-Neto, M.B. & Pinheiro-Machado, C. 1996. O capim-flecha (Tristachya leiostachya Ness.) e sua importância na dinâmica do fogo no Parque Nacional das Emas, p. 68–75. In: Miranda, H.S.C.; Saito, H. & Dias, B.F.S. (eds.). Impactos de queimadas em áreas de cerrado e restinga. UnB/ECL. 187p.

Ramos-Neto, M.B. & Pivello, V.R. 2000. Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environmental Management, 26(6): 675-684.

San José, J.J. & Fariñas, M.R. 1991. Changes in tree density and species composition in a protected Trachypogon savanna protected for 25 years. Acta Oecologica, 12(3): 237-247.

Sarmiento, G. 1992. Adaptative strategies of perennial grasses in South America savannas. Journal of Vegetation Science, 3(3): 325-336.

Schwilk, D.W. & Ackerly, D.D. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos, 94(2): 326-336.

Silva, D.M. & Batalha, M.A. 2008. Soil–vegetation relationships in cerrados under different fire frequencies. Plant and Soil, 311(1-2): 87-96 Silva, I.A. & Batalha, M.A. 2010a. Woody plant species co-occurrence in Brazilian savannas under different fire frequencies. Acta Oecologica, 36(1): 85-91.

Silva, I.A. & Batalha, M.A. 2010b. Phylogenetic structure of Brazilian savannas under different fire regimes. Journal of Vegetation Science, 21(6): 1003-1013.

Silva, I.A.; Carvalho, G.H.; Loiola, P.P.; Cianciaruso, M.V.; & Batalha, M.A. 2010. Herbaceous and shrubby species co-occurrences in Brazilian savannas: the roles of fire and chance. Community Ecology, 11(1): 97-104.

Simon, M.F.; Grether, R.; Queiroz, L.P.; Skema, C.; Pennington, R.T. & Hughes, C.E. 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Science USA, 106(48): 20359-20364.

Slingsby, J.A. & Verboom, G.A. 2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the Schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. American Naturalist, 168(1): 14-27.

Unesco (United Nations Educational, Scientific, and Cultural Organization). 2001. Cerrado protected areas: Chapada dos Veadeiros and Emas National Parks. Unesco. URL . (acesso em 11 de maio de 2011).

Vamosi, J.C. & Wilson, J.R.U. 2008. Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecology Letters, 11(10): 1047-1053.

Van Wilgen, B.W.; Govender, N.; Biggs, H.C.; Ntsala, D. & Funda, X.N. 2004. Response of savanna fire regimes to changing fire management policies in a large African National Park. Conservation Biology, 18(6): 1533–1540.

Verdú, M. & Pausas, J.G. 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95(6): 1316-1323.

Webb, C.O.; Ackerly, D.D.; McPeek, M.A. & Donoghue, M.J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33: 475-505.

Webb, C.O. & Donoghue, M.J. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5(1): 181-183.

Weiher, E. & Keddy, P.A. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos, 74(1): 159-164.

Published

12/12/2011