Impact of Heat Waves on Human Thermal Comfort in the Tapajós National Forest, West of Pará

Authors

  • Tiago Bentes Mandú Instituto Nacional de Pesquisas Espaciais. Brasil
  • Ana Lucia da Silva Nascimento Instituto Nacional de Pesquisas Espaciais. Brasil
  • William Duarte Jacondino Instituto Nacional de Pesquisas Espaciais. Brasil
  • Ana Carla Dos Santos Gomes Universidade Federal do Oeste do Pará/UFOPA. Brasil

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v11i4.1775

Keywords:

Amazon, thermal sensation, extreme weather events, thermal stress, conservation units

Abstract

Heat waves have been more recurrent through a global warming scenario. Extreme temperatures have some rate of human thermal discomfort due to heat, which can cause and potentiate comorbidities and lead to death in extreme cases. This study evaluated the occurrence of heat waves and their relationship with human thermal discomfort in the Tapajós National Forest region, located in the state of Pará, Brazil. Data were obtained from the conventional weather station of the National Institute of Meteorology, during the period from 1971 to 2019. Human thermal comfort was estimated from the Thom Discomfort Index (DI), which is an empirical methodology capable of representing the thermal environment by means of data of maximum temperature and relative humidity and heat waves were estimated using the CTX90pct index. with higher rates of discomfort in the less rainy season and potentiated in periods of drought in the region. The DI showed that in the presence of heat waves, the discomfort caused by heat felt by the population increases by about 40%. The results presented added to the increase in discomfort can cause effects on public health and socioeconomic activities in the region. 

Author Biographies

Ana Lucia da Silva Nascimento, Instituto Nacional de Pesquisas Espaciais. Brasil

Meteorologista, Mestre em Meteorologia pela Univerisdade Federal de Pelotas, Doutoranda em Meteorologia no Instituto Nacional de Pesquisas Espaciais.

William Duarte Jacondino, Instituto Nacional de Pesquisas Espaciais. Brasil

Meteorologista, Mestre em Meteorologia pela Univerisdade Federal de Pelotas, Doutorando em Meteorologia no Instituto Nacional de Pesquisas Espaciais.

Ana Carla Dos Santos Gomes, Universidade Federal do Oeste do Pará/UFOPA. Brasil

Professora do Curso de Ciências Atmosféricas da Uiverisdade Federal do Oeste do Pará, doutora em Ciências Climaticas pela Universidade Federal do Rio Grande do Norte

References

Alves LER & Gomes HB. Validação da Imputação Múltipla via Predictive Mean Matching para Preenchimento de Falhas nos Dados Pluviométricos da Bacia do Médio São Francisco. Anuário do Instituto de Geociências, 43(1): 199-206, 2020.

Artaxo P. Mudanças climáticas e o Brasil. Revista USP, 103: 8-12, 2014.

Azur MJ, Stuart EA, Frangakis C & Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? International journal of methods in psychiatric research, 20(1): 40-49, 2011.

Silva PL de A. Biodiversidade e mudanças climáticas no Brasil: levantamento e sistematização de referências. WWF Brasil (Relatório). Brasília, 2018.

Bitencourt DP, Fuentes MV, Maia PA & Amorim FT. Frequência, Duração, Abrangência Espacial e Intensidade das Ondas de Calor no Brasil. Revista Brasileira de Meteorologia, 31(4): 506-517, 2016.

Bitencourt DP, Fuentes MV, Franke AE, Silveira RB & Alves MP. The climatology of cold and heat waves in Brazil from 1961 to 2016. International Journal of Climatology, 40(4): 2464-2478, 2020.

Fischer EM & Schär C. Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Climate Dynamics, 33(7-8): 917, 2009.

Fisch G, Marengo JA & Nobre CA. The climate of Amazonia – a review. Acta Amazônica, (28)2: 101-126, 1998.

Frich P et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate research, 19: 193-212, 2002.

Geirinhas JL, Trigo RM, Libonati R, Coelho CA & Palmeira AC. Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, 38(4): 1760-1776, 2017.

Geirinhas JL, Trigo RM, Libonati R & Peres LDF. Caracterização Climática de Ondas de Calor no Brasil. Anuário do Instituto de Geociências, 41(3): 333-350, 2019.

Geirinhas JL et al. Heat-related mortality at the beginning of the twenty-first century in Rio de Janeiro, Brazil. International journal of biometeorology, 1-14, 2020.

ICMBio – Instituto Chico Mendes de Conservação da Biodiversidade. Disponivel em: https://www.icmbio. gov.br/flonatapajos/. Acesso em: 10/07/2020.

Jacondino WD, Nascimento ALDS, Nunes AB & Conrado H. Análise sinótica do mês de abril de 2018 na região Sul do Brasil: Episódio de calor extremo. Revista Brasileira de Climatologia, (25): 182-203, 2019.

Jenerette GD et al. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape ecology, 3(22): 353-365, 2007.

Jiménez-Muñoz JC et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific reports, (6): 33130, 2016.

Kong Q, Guerreiro SB, Blenkinsop S, Li XF & Fowler HJ. Increases in summertime concurrent drought and heatwave in Eastern China. Weather and Climate Extremes, 28(1): 100242, 2020.

Laaidi K et al. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental health perspectives, 2(120): 254-259, 2012.

Li KH, Raghunathan TE & Rubin DB. Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution. Journal of the American Statistical Association, 86(416): 1065-1073, 1991.

Lima NGB, Galvani E, Falcão RM & Cunha-Lignon M. Air temperature and canopy cover of impacted and conserved mangrove ecosystems: a study of a subtropical estuary in Brazil. Journal of Coastal Research, (65): 1152-1157, 2013.

Luo M, Ning G, Xu F, Wang S, Liu Z & Yang Y. Observed heatwave changes in arid northwest China: Physical mechanism and long-term trend. Atmospheric Research, 1(1): 105009, 2020.

Mandú TB, Gomes ACDS, Costa GB & Neves TTDAT. Avaliação de tendência nas ondas de calor registradas em Manaus/AM, Brasil. Revista Brasileira de Climatologia, 27(1): 405-425, 2020a.

Mandú TB, Gomes ACDS & Coutinho MDL. Caracterização do conforto térmico da cidade de Santarém/PA. Revista Geonorte, 11(37): 279-291, 2020b. Marengo JA. O futuro clima do Brasil. Revista USP, 103: 25-32, 2014.

Marengo JA & Valverde MC. Caracterização do clima no Século XX e Cenário de Mudanças de clima para o Brasil no Século XXI usando os modelos do IPCC-AR4. Revista Multiciência, 8: 5-28, 2007.

McGeehin MA & Mirabelli M. The potential impacts of climate variability and change on temperaturerelated morbidity and mortality in the United States. Environmental health perspectives, 2(109): 185-189, 2001.

Mitchell D et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environmental Research Letters (11): 074006, 2016.

Nick LM & Nedel AS. Análise do Conforto Térmico Humano ao Longo do Verão na Cidade de Pelotas/RS e a Relação com Condições Meteorológicas Extremas. Anuario do Instituto de Geociencias, 2(41): 211-222, 2018.

Opitz-Stapleton S et al. Heat index trends and climate change implications for occupational heat exposure in Da Nang, Vietnam. Climate Services (2): 41-51, 2016.

Parsons K. 2014. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. 1 ed. CRC press. 545p.

Perkins SE, Alexander LV & Nairn JR. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39(20): 1-5, 2012.

Reis NCS, Boiaski NT & Ferraz SET. Characterization and Spatial Coverage of Heat Waves in Subtropical Brazil. Atmosphere, 10(5): 1-15, 2019.

Rusticucci M & Barrucand M. Climatología de temperaturas extremas en la Argentina. Consistencia de datos. Relación entre la temperatura media estacionaly la ocurrencia de días extremos. Meteorologica, (26): 69-84, 2002.

Santos J, Silva V, Lima E, Araújo L & Costa A. Campo Térmico Urbano e a sua Relação com o Uso e Cobertura do Solo em Cidade Tropical Úmida. Revista Brasileira de Geografia Física, 5(3): 540-557, 2012.

Shiva J, Chandler DG & Kunkel KE. Localized changes in heat wave properties across the United States. Earth’s Future, 7(3): 300-319, 2019.

Sugahara S, Rocha RP, Ynoue RY & Silveira RB. Homogeneity assessment of a station climate series (1933–2005) in the Metropolitan Area of São Paulo: instruments change and urbanization effects. Theoretical and applied climatology, 107(3-4): 361-374, 2012.

Stott PA et al. Attribution of weather and climaterelated events. Climate science for serving society, 1(1): 307-337, 2013. Thom EC. The discomfort index. Weatherwise, (12)2: 57-61, 1959.

Wilks DS. 2011. Statistical methods in the atmospheric sciences. 3 ed. Academic press. 661p.

WMO. World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation. Note n°8, Secretariat of the WMO, Geneva, 2008.

Published

10/11/2021

Issue

Section

Análise de Componentes do Sistema Climático e a Biodiversidade no Brasil