Minimal Impact Management for Açaí Production in the Amazon: Effects on Horizontal Structure and Woody Biomass Stock in Flooded Ecosystem

Authors

  • Jéssica Sueli Pereira da Silva Universidade Federal Rural da Amazônia
  • Julia Isabella Rodrigues Universidade Federal Rural da Amazônia https://orcid.org/0000-0001-7394-8482
  • Gracialda Costa Ferreira Universidade Federal Rural da Amazônia https://orcid.org/0000-0002-4018-9624
  • Denner Roberto Sacramento dos Santos Universidade Federal Rural da Amazônia
  • Teofro Lacerda Gomes Instituto Federal do Pará
  • Walmer Bruno Rocha Martins Universidade do Estado do Pará https://orcid.org/0000-0001-8795-1703

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v13i1.2213

Keywords:

Floodable ecosystem, Forest management, Silvicultural intervention

Abstract

In wetland forest ecosystems, the abundance of açaí (Euterpe oleraceae Mart.), a superfood consumed worldwide, demanded the expansion of productive areas, putting the existence of native species of the biome at risk. As an alternative, there is minimal impact management, which consists of the planned removal of the most abundant trees, without harming species diversity. Conducting research on the subject is essential to prove the environmental feasibility of the technique. Therefore, the objective of this work was to evaluate the effects of minimal impact management aimed
at açaí production in floodplain forest ecosystems in the Amazon. For this, the 4 ha area was divided into 16 subplots (25 mx 25 m), where after 100% inventory (DBH ≥ 10 cm), individuals with smaller circumference were suppressed and those with DAP up to 40 cm were ringed.The results showed that the management did not change the order of importance of the species and the pattern of diameter distribution. Only Parkia ulei, Pouteria sp. and Unonopsis guatterioides had the conservation degree of their populations changed from abundant (A) to common (C), after the silvicultural intervention. Pielou’s equability and Simpson’s dominance indices remained similar after handling. There was no
statistically significant difference in biomass removal. Therefore, this study demonstrated that the management of minimal impact aimed at the production of açaí in the Amazon does not cause changes in terms of species diversity, as long as it is carried out properly following the correct methodology.

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2013; 22(6): 711-728.

Bartelt D, Koch J, Tourinho MM. Anbau von Acai (Euterpe oleracea) und Kakao (Theobroma sylvestre) in Primärwäldern der varzeas am rio Tocantins (Brasilien/ Para). Forstarchiv Hannover. 2000; 71(6): 250-256.

Begon M, Townsend CR, Harper JL. Ecologia: de indivíduos a ecossistemas. Artmed editora; 2009.

Carim MJV, Wittmann FK, Piedade MTF, Guimarães JRS, Tostes LCL. Composition diversity and structure of tidal “Várzea” and “Igapó” floodplain forests in eastern Amazonia Brazil. Brazilian Journal of Botany. 2017; 40(1): 115-124.

Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences; 2004. 359(1443): 409-420.

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 2005; 145(1): 87-99.

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, ORTIZ-Malavassi E. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology. 2014; 20(10): 3177-3190.

Chave J, Riéra B, Dubois MA. Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology. 2001; 17(1): 79-96.

Costa BC, Suzuki PM, Martins WBR, Andrade VMS, Oliveira FA. Dinâmica da massa seca e propriedades químicas da liteira em Virola surinamensis e floresta sucessional na Amazônia oriental. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2017; 12(1): 23.

Cunha MA, Costa SMF. Mapeamento da palmeira de açaí (Euterpe oleracea Mart.) na floresta Amazônica utilizando imagem de satélite de alta resolução espacial. Revista Espinhaço. 2020; 20(2): 40-49.

Elias F, Marimon-Junior BH, Oliveira FJM, Oliveira JCA, Marimon BS. Soil and topographic variation as a key factor driving the distribution of tree flora in the Amazonia/Cerrado transition. Acta Oecologica. 2019; 100(6): 103467.

Fauset S, Johnson MO, Gloor M, Baker TR, Monteagudo MA, Brienen RJW, Feldpausch TR, Lopez- Gonzalez G, Malhi Y, Ter Steege H, Pitman NCA, Baraloto C, Engel J, Pétronelli P, Andrade A, Camargo JLC, Laurance SGW, Laurance WF, Chave J. et al. Hyperdominance in Amazonian forest carbon cycling. Nature Communications. 2015; 6(1): 6857.

Ferreira LV, Almeida SS. Relação entre a altura de inundação riqueza específica de plantas e o tamanho de clareiras naturais em uma floresta inundável de igapó na Amazônia Central. Revista Árvore. 2005; 29(3): 445-453.

Figueiredo SMM, Figueiredo EO. Modelagem de distribuição de espécies arbóreas por classe diamétrica no sudoeste da Amazônia. Scientia Forestalis. 2019; 47(124): 644-654.

Frare JCV, Oliveira IA, Freitas, L. Potencial agroecológico da agricultura familiar de comunidades ribeirinhas agroextrativistas do Marajó Amazônia Oriental. Unimar. 2017; 26(1-2): 41-53.

Freitas MAB, Vieira ICG, Albernaz ALKM, Magalhães JLL, Lees AC. Floristic impoverishment of Amazonian floodplain forests managed for açaí fruit production. Forest Ecology and Management. 2015; 351: 20-27.

Guimaraes AF, Souza CR, Rosa C, Santos JP, Teixeira LAF, Zanzini LP, Santiago WTV, Zanzini ACS. Small- scale environmental variations drive vegetation structure and diversity in Amazon riverine forests. Flora: Morphology Distribution Functional Ecology of Plants. 2021; 283.

Homma AKO, Nogueira OL, Menezes AJEA, Carvalho JEU, NIcoli CML, Matos GB. Açaí: novos desafios e tendências. Amazônia: Ciência e Desenvolvimento. 2006; 1(2): 7-23.

IBGE (Instituto Brasileiro de Geografia e Estatística). 2012. Manual técnico da vegetação brasileira.

IBGE (Instituto Brasileiro de Geografia e Estatística). 2021b. IBGE Cidades. Disponível em: https://cidades.ibge.gov.br/brasil/pa/portel/panorama. Acesso em 29/12/2021.

IBGE (Instituto Brasileiro de Geografia e Estatística). 2021a. Produção da extração vegetal e da silvicultura – PEVS 1990-2016. Disponível em: https://www.ibge.

gov.br/estatisticasnovoportal/economicas/agricultura-e- pecuaria/9105 Acesso em: 27/12/2021.

Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann FA. Classification of major naturally-occurring amazonian lowland wetlands. Wetlands. 2011; 31(4): 623-640.

Knight DH. A Phytosociological Analysis of Species- Rich Tropical Forest on Barro Colorado Island Panama. Ecological Monographs. 1975; 45(3): 259-284.

Kubitzki K, Ziburski A. Seed Dispersal in Flood Plain Forests of Amazonia. Biotropica. 1994; 26(1): 30.

Lindner A. Biomass storage and stand structure in a conservation unit in the Atlantic Rainforest – The role of big trees. Ecological Engineering. 2010; 36(12): 1769-1773.

Lira-Guedes AC, Leal GDA, Fischer GR, Aguiar LJG, Melém NJ, Baia ALP, Guedes MC. Carbon emissions in hydromorphic soils from an estuarine floodplain forest in the Amazon River. Revista Brasileira de Ciências Ambientais. 2021; 56(3): 413-423.

Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology. 2006; 12(7): 1107-1138.

Martinez GB, Mourão M, Brienza Junior S. Respostas morfofisiológicas de plantas de açacu (Hura crepitans L.) provenientes de várzea do rio Amazonas: efeito de anoxia do solo. Revista Árvore. 2011; 35(6): 1155-1164. Müeller-Dombois D, Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. New York: Willey.

Neves EJM, Santos ÁF, Martins EG. 2002. Virola Surinamensis: silvicultura e usos. Paraná: Embrapa Florestas.

Oliveira-Filho AT. 2006. Catálogo das Árvores Nativas de Minas Gerais. 1. ed. Minas Gerais.

Overman JPM, Witte HJL, Saldarriaga JG. Evaluation of regression models for above-ground biomass determination in Amazon rainforest. Journal of Tropical Ecology. 1994; 10(2): 207-218.

Paoli GD, Curran LM, Slik JWF. Soil nutrients affect spatial patterns of aboveground biomass and emergente tree density in southwestern Borneo. Oecologia. 2008; 155(2): 287-299.

Parolin P, Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Piedade MTF, Junk WJ. Central amazonian floodplain forests: Tree adaptations in a pulsing system. Botanical Review. 2004; 70(3): 357-380.

Prance GT. Notes on the vegetation of amazonia III. The terminology of amazonian forest types subject to inundation. Brittonia. 1979; 31(1): 26-38.

Queiroz JAL, Mochiutti S. Manejo de Mínimo Impacto para Produção de Frutos em Açaizais Nativos no Estuário Amazônico. Embrapa Amapá-Comunicado Técnico (INFOTECA-E), 2001.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.Viena Austria, 2021.

RADAMBRASIL. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Folha SA. 22. Rio de Janeiro: [s.n.].

Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B. Biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution. 2017; 8(9): 1163-1167.

Ribeiro LOMM, Silva JNM, Netto SP, Queiroz WT. Avaliação da amostragem com substituição parcial com duas medições sucessivas em floresta manejada no município de Paragominas, Pará. Scientia Forestalis. 2019; 47(124): 778-790.

Santos GC, Jardim MAG. Florística e estrutura do estrato arbóreo de uma floresta de várzea no município de Santa Bárbara do Pará, Estado do Pará, Brasil. Acta Amazonica. 2006; 36(4): 437-446.

Santos BLG, Gama JRV, Ribeiro RBS, Anjos KF, Gomes KM, Ximenes LC, Melo LO. Estrutura e valoração de Euterpe oleracea em uma floresta de várzea na Amazônia. Advances in Forestry Science. 2018; 5(3): 391-396.

Silva RP. Alometria, estoque e dinâmica da biomassa de florestas primárias e secundárias na região de Manaus (AM). 2007. Tese (Doutorado em Ciências de Florestas

Tropicais). Instituto Nacional de Pesquisas da Amazônia [acesso em 24 out 2021]. Disponível em: http://www.bibliotecaflorestal.ufv.br/handle/123456789/4589

Sioli H. Alguns resultados e problemas da Limnologia amazônica. Boletim Técnico do Instituto Agranomico do Norte. 1951; 24: 1-44.

Targhetta N, Kesselmeier J, Wittmann F. Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobotanica. 2015; 50(3): 185-205.

Published

28/03/2023

Issue

Section

Fluxo contínuo