Population trends of medium to large-sized vertebrates in protected areas in brazilian Amazonia

Authors

  • Elildo Alves Ribeiro de Carvalho Junior Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros/CENAP, Atibaia/SP, Brasil
  • Ricardo Sampaio Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros/CENAP, Atibaia/SP, Brasil
  • Gerson Buss Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros/CPB, Cabedelo/PB, Brasil
  • Marcos de Souza Fialho Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Aves Silvestres/CEMAVE, Cabedelo/PB, Brasil
  • Marcelo Lima Reis Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Coordenação de Monitoramento da Biodiversidade/COMOB, Brasília/DF, Brasil

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v14i3.2484

Keywords:

Amazonia, Biodiversity index, Biodiversity monitoring, Population trends

Abstract

The current biodiversity crisis has generated a growing demand for information on the status and trends of biodiversity, especially in mega diverse regions such as the tropics, where comprehensive data is lacking. In view of this, the Brazilian government developed the Brazilian in situ monitoring program of Federal Protected Areas – Programa Monitora, a long-term program aimed at monitoring the state of biodiversity and ecosystem services in federal protected areas (PAs). In this study, we used a nine-year monitoring time series (2014-2022) from 22 PAs in the Amazon to assess trends in 167 populations of medium- to large-sized terrestrial birds and mammals, as well as aggregate biodiversity trends, using the geometric mean of the relative abundances as a biodiversity index. We found stability, decline and increase for 92%, 6.5 and 0.6% of the analyzed populations, respectively. We did not find differences between the population growth rates of birds and mammals, or between populations located in strictly protected and sustainable use PAs. The geometric mean of relative abundances remained stable over the sampled period. The results suggest that, in general, the monitored PAs have been effective for the conservation of the program's target populations, although some populations have suffered significant declines, which raises an alert. In the near future, the time series will become longer and longer and more and more PAs and populations will become eligible for analysis. Therefore, the continuity of the program is essential to ensure more robust results.

References

1. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services 2019. Doi: https://doi.org/10.5281/ZENODO.3553579.

2. Isbell F, Balvanera P, Mori AS, He JS, Bullock JM, Regmi GR, et al. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front Ecol Environ 2023; 21:94–103. Doi: https://doi.org/10.1002/FEE.2536.

3. Butchart SHM, Walpole M, Collen B, Van Strien Arco, Scharlemann JPW, Almond REA, et al. Global biodiversity: Indicators of recent declines. Science 2010; 328: 1164–1168. Doi: https://doi.org/10.1126/science.1187512.

4. Cowie RH, Bouchet P, Fontaine B. The Sixth Mass Extinction: fact, fiction or speculation? Biological Reviews 2022; 97: 640–663. Doi: https://doi.org/10.1111/brv.12816.

5. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. Status and Ecological Effects of the World’s Largest Carnivores. Science 2014; 343: 1241484. Doi: https://doi.org/10.1126/science.1241484.

6. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, et al. Collapse of the world’s largest herbivores. Sci Adv 2015; 1: e1400103. Doi: https://doi.org/10.1126/sciadv.1400103.

7. Capdevila P, Noviello N, McRae L, Freeman R, Clements CF. Global patterns of resilience decline in vertebrate populations. Ecol Lett 2022; 25: 240–251. Doi: https://doi.org/10.1111/ele.13927.

8. McGraw DM. The Story of the Biodiversity Convention: From Negotiation to Implementation. Governing Global Biodiversity, Routledge; 2017, p. 7–38. Doi: https://doi.org/10.4324/9781315253930-2.

9. Colglazier W. Sustainable development agenda: 2030. Science 2015; 349: 1048–1050. Doi: https://doi.org/10.1126/science.aad2333

10. C.B.D. Secretariat. First Draft of the Post-2020 Global Biodiversity Framework. CBD/WG2020/3/3. Montreal: 2021.

11. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, et al. Essential biodiversity variables. Science 2013; 339: 277–278. Doi: https://doi.org/10.1126/science.1229931.

12. Proença V, Martin LJ, Pereira HM, Fernandez M, McRae L, Belnap J, et al. Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biol Conserv 2017; 213: 256–263. Doi: https://doi.org/10.1016/j.biocon.2016.07.014.

13. Bhatt R, Gill MJ, Hamilton H, Han X, Linden HM, Young BE. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ Conserv 2020; 47: 15–21. Doi: https://doi.org/10.1017/S0376892919000365.

14. Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 2005; 360(1454): 289-295. Doi: https://doi.org/10.1098/rstb.2004.1584

15. Soberón J, Peterson AT. Monitoring biodiversity loss with primary species-occurrence data: toward national-level indicators for the 2010 target of the convention on biological diversity. AMBIO 2009; 38(1): pp.29-34. Doi: https://doi.org/10.1579/0044-7447-38.1.29

16. Collen B, Ram M, Zamin T, McRae L. The Tropical Biodiversity Data Gap: Addressing Disparity in Global Monitoring. 2008; 1: 75–88. Doi: https://doi.org/10.1177/194008290800100202.

17. Dove S, Böhm M, Freeman R, Mcrae L, David |, Murrell J, et al. Quantifying reliability and data deficiency in global vertebrate population trends using the Living Planet Index. Glob Chang Biol 2023; 9(17): 4966–4982. Doi: https://doi.org/10.1111/GCB.16841.

18. McRae L, Deinet S, Freeman R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PLoS One 2017;12:e0169156. https://doi.org/10.1371/journal.pone.0169156.

19. Monitora, Cronemberger C, Ribeiro KT, Acosta RK, Andrade DFC de, Marini-Filho OJ, et al. Social Participation in the Brazilian National Biodiversity Monitoring Program Leads to Multiple Socioenvironmental Outcomes. Citiz Sci 2023; 8. Doi: https://doi.org/10.5334/CSTP.582.

20. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. Introduction to distance sampling: Estimating abundance of biological populations. Oxford, UK: Oxford University Press; 2001.

21. Nobre R de A, Kinouchi MR, Constantino PAL, Pereira RC, Uehara-Prado M. Monitoramento da biodiversidade: roteiro metodológico de aplicação. Brasilia, DF: 2015.

22. Peres CA, Cunha A. Manual censo e monitoramento de vertebrados de médio e grande porte por transecção linear em florestas tropicais. Wildife Conservation Society, Ministério do Meio Ambiente e ICMBio, Brasil 2011.

23. Munari DP, Keller C, Venticinque EM. An evaluation of field techniques for monitoring terrestrial mammal populations in Amazonia. Mammalian Biology 2011; 76: 401–408. Doi: https://doi.org/10.1016/J.MAMBIO.2011.02.007.

24. De Thoisy B, Brosse S, Dubois MA. Assessment of large-vertebrate species richness and relative abundance in Neotropical forest using line-transect censuses: What is the minimal effort required? Biodivers Conserv 2008; 17: 2627–2644. Doi: https://doi.org/10.1007/s10531-008-9337-0.

25. Pacheco JF, Silveira LF, Aleixo A, Agne CE, Bencke GA, Bravo GA, et al. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee—second edition. Ornithology Research 2021; 29: 94–105. Doi: https://doi.org/10.1007/s43388-021-00058-x.

26. Quintela FM, da Rosa CA, Feijó A. Updated and annotated checklist of recent mammals from Brazil. An Acad Bras Cienc 2020; 92: 1–57. Doi: https://doi.org/10.1590/0001-3765202020191004.

27. Peres CA, Janson CH. Species coexistence, distribution, and environmental determinants of neotropical primate richness: A community-level zoogeographic analysis. In: Fleagle J, Janson C, Reed K. Primate Communities, Cambridge, UK: Cambridge University Press; 2009, p. 55–74.

28. Wauchope HS, Amano T, Sutherland WJ, Johnston A. When can we trust population trends? A method for quantifying the effects of sampling interval and duration. Methods Ecol Evol 2019; 10: 2067–2078. Doi: https://doi.org/10.1111/2041-210X.13302.

29. Skalski JR, Ryding KE, Millspaugh JJ. Wildlife Demography: Analysis of Sex, Age, and Count Data. Wildlife Demography: Analysis of Sex, Age, and Count Data. Burlington, USA: Elsevier Academic Press; 2005

30. Marsden SJ, Loqueh E, Takuo JM, Hart JA, Abani R, Ahon DB, et al. Using encounter rates as surrogates for density estimates makes monitoring of heavily-traded grey parrots achievable across Africa. Oryx 2016; 50: 617–25. Doi: https://doi.org/10.1017/S0030605315000484.

31. Auger‐Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, Leos-Barajas, V., Flemming J.M., Nielsen A., Petris, G., Thomas L. A guide to state–space modeling of ecological time series. Ecol Monogr. 2021; 91(4): e01470. Doi: https://doi.org/10.1002/ecm.1470.

32. Daskalova GN, Myers-Smith IH, Godlee JL. Rare and common vertebrates span a wide spectrum of population trends. Nat Commun 2020; 11: 4394. Doi: https://doi.org/10.1038/s41467-020-17779-0.

33. Kéry M, Schaub M. Bayesian Population Analysis Using WinBUGS. Academic Press; 2012.

34. Plummer M. JAGS Version 4.0.0 user manual 2015: 1–41.

35. Su Y, Yajima M. R2jags: A Package for Running jags from R. Doi: https://doi.org/10.32614/CRAN.package.R2jags

36. Gelman A, Shirley K. Inference from simulations and monitoring convergence. In: Brooks S, Gelman A, Jones GL, Meng X-L. Handbook of Markov Chain Monte Carlo, Boca Raton: Chapman and Hall/CRC; 2011, p. 163–74.

37. Buckland ST, Studeny AC, Magurran AE, Illian JB, Newson SE. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2011; 2(9): 1-15. Doi: https://doi.org/10.1890/ES11-00186.1.

38. Buckland ST, Magurran AE, Green RE, Fewster RM. Monitoring change in biodiversity through composite indices. Philos. Trans. R. Soc. B 2005; 360: 243–254. Doi: https://doi.org/10.1098/rstb.2004.1589.

39. Green E, McRae L, Harfoot M, Hill S, Simonson W, Baldwin-Cantello W. Below the canopy: plotting global trends in forest wildlife populations. 2019. WWF Report. WWF.

40. Van Strien AJ, Soldaat LL, Gregory RD. Desirable mathematical properties of indicators for biodiversity change. Ecol Indic 2012; 14: 202–8. Doi: https://doi.org/10.1016/J.ECOLIND.2011.07.007.

41. Westveer J, Freeman R, McRae L, Marconi V, Almond REA, Grooten M. A Deep Dive into the Living Planet Index: A Technical Report. Gland, Switzerland: 2022.

42. Barelli C, Oberosler V, Cavada N, Mtui AS, Shinyambala S, Rovero F. Long‐term dynamics of wild primate populations across forests with contrasting protection in Tanzania. Biotropica 2023; 55(3): 617–627. Doi: https://doi.org/10.1111/btp.13212.

43. Rossman S, Yackulic CB, Saunders SP, Reid J, Davis R, Zipkin EF. Dynamic N-occupancy models: Estimating demographic rates and local abundance from detection-nondetection data. Ecology 2016; 97: 3300–3307. Doi: https://doi.org/10.1002/ecy.1598.

44. Parry LW, Barlow J, Peres CA. Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. J Trop Ecol 2007; 23: 653–662. Doi: https://doi.org/10.1017/S0266467407004506.

45. Peres CA. Effects of Subsistence Hunting on Vertebrate Community Structure in Amazonian Forests. Conservation Biology 2000; 14: 240–253. Doi: https://doi.org/10.1046/j.1523-1739.2000.98485.x.

46. Sampaio R, Lima AP, Magnusson WE, Peres CA. Long-term persistence of midsized to large-bodied mammals in Amazonian landscapes under varying contexts of forest cover. Biodivers Conserv 2010; 19: 2421–2439. Doi: https://doi.org/10.1007/S10531-010-9848-3/METRICS.

47. Sinclair ARE. Mammal population regulation, keystone processes and ecosystem dynamics. Philos Trans R Soc Lond B 2003; 358: 1729–1740. Doi: https://doi.org/10.1098/rstb.2003.1359.

48. Gaston KJ. The importance of being rare. Nature 2012 487: 46–47. Doi: https://doi.org/10.1038/487046a.

49. Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB. When Do Ecosystem Services Depend on Rare Species? Trends Ecol Evol 2019; 34: 746–58. Doi: https://doi.org/10.1016/J.TREE.2019.03.010.

50. Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortune C, et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc Lond B 2016; 283: 20160084. Doi: https://doi.org/10.1098/RSPB.2016.0084.

51. Beschta RL, Ripple WJ. Can large carnivores change streams via a trophic cascade? Ecohydrology 2019; 12: e2048. Doi: https://doi.org/10.1002/ECO.2048.

52. Terborgh J, Lopez L, Nuñez P V., Rao M, Shahabuddin G, Orihuela G, et al. Ecological Meltdown in Predator-Free Forest Fragments. Science 2001; 294: 1923–1926. Doi: https://doi.org/10.1126/SCIENCE.1064397.

53. Jansen PA, Ahumada JA, Fegraus EH, O’Brien TG. TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In: Meek P, Fleming P, Ballard G, Banks P, Claridge A, Sanderson J, et al.. Camera trapping: wildlife management and research, Collingwood, Australia: CISRO; 2014, p. 263–70.

54. Mendonça EN, Martins A, K.M Albernaz AL, Carvalho Jr. EAR. Avaliação da Efetividade da Reserva Biológica do Gurupi na Conservação de Vertebrados Terrestres de Médio e Grande Porte. Biodiversidade Brasileira - BioBrasil 2021; 11: 1–16. Doi: https://doi.org/10.37002/biobrasil.v11i3.1769.

55. White ER. Minimum Time Required to Detect Population Trends: The Need for Long-Term Monitoring Programs. Bioscience 2019; 69:40–46. Doi: https://doi.org/10.1093/biosci/biy144.

56. Beaudrot L, Ahumada JA, O’Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, et al. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight. PLoS Biol 2016; 14: e1002357. Soi: https://doi.org/10.1371/journal.pbio.1002357.

57. Pillay R, Watson JEM, Hansen AJ, Jantz PA, Aragon-Osejo J, Armenteras D, et al. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nature Ecology & Evolution 2022; 6:1840–1849. Doi: https://doi.org/10.1038/s41559-022-01915-8.

58. Benítez-López A, Alkemade R, Schipper AM, Ingram DJ, Verweij PA, Eikelboom JAJ, et al. The impact of hunting on tropical mammal and bird populations. Science 2017; 356: 180–183. Doi: https://doi.org/10.1126/science.aaj1891.

59. Sampaio R, Morato RG, Abrahams MI, Peres CA, Chiarello AG. Physical geography trumps legal protection in driving the perceived sustainability of game hunting in Amazonian local communities. J Nat Conserv 2022; 67: 126175. Doi: https://doi.org/10.1016/J.JNC.2022.126175.

60. WWF. Living Planet Report 2022 – Building a nature- positive society. Gland, Switzerland: WWF; 2022.

61. Beaudrot L, Ahumada JA, O’Brien TG, Jansen PA. Detecting tropical wildlife declines through camera-trap monitoring: An evaluation of the Tropical Ecology Assessment and Monitoring protocol. Oryx 2019; 53: 126–129. Doi: https://doi.org/10.1017/S0030605318000546.

62. Myers N. Biodiversity and the Precautionary Principle. Ambio 2013; 22: 74–79. Doi: https://doi.org/10.4324/9781849770583.

63. Cooney R. Better safe than sorry? The precautionary principle and biodiversity conservation. Oryx 2004; 38: 357–358. Doi: https://doi.org/10.1017/S0030605304000705.

64. Tófoli CF, Rodrigues LS, Lemos PF, Lehmann D, Souza JM, Carvalho RR. Encontro dos saberes: uma nova forma de conversar a conservação. Nazaré Paulista, SP: Instituto de Pesquisas Ecológicas; 2021.

65. Schmeller DS, Weatherdon L V., Loyau A, Bondeau A, Brotons L, Brummitt N, et al. A suite of essential biodiversity variables for detecting critical biodiversity change. Biological Reviews 2018; 93: 55–71. Doi: https://doi.org/10.1111/brv.12332.

66. Vihervaara P, Auvinen A-PP, Mononen L, Törmä M, Ahlroth P, Anttila S, et al. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Glob Ecol Conserv 2017; 10: 43–59. Doi: https://doi.org/10.1016/j.gecco.2017.01.007.

Published

2024-10-21

Issue

Section

Programa Nacional de Monitoramento da Biodiversidade - Programa Monitora

Most read articles by the same author(s)