Chronic Exposure to the Pyrethroid Insecticide Deltamethrin: Liver and Energetic Implications in Fruit Bats Artibeus lituratus

Authors

  • Renata Maria Pereira de Freitas Universidade Federal de Goiás
  • Ariane Maria Rizzoli Moreno Universidade Federal de Viçosa
  • Ana Carolina Neves Universidade Federal de Viçosa
  • Mariana Moraes de Castro Universidade Federal de Viçosa https://orcid.org/0000-0002-7416-3529
  • Mariella Bontempo Freita Universidade Federal de Viçosa
  • Jerusa Maria de Oliveira Universidade Federal de Alagoas

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v13i2.2370

Keywords:

Oxidative stress, Energy metabolism, Glucose

Abstract

Pyrethroid insecticides have been incorporated into the market as a less toxic alternative for non-target animals. However, deltamethrin, an insecticide of this class, is known to cause acute and chronic exposure toxicity in different animals. Bats are non-target animals that are constantly exposed to pesticides while foraging and this can impact their survival. The objective was to evaluate the effect of chronic exposure to deltamethrin on the redox state and energy metabolism of fruit bats of the species Artibeus lituratus. For this, the bats were collected (n=12) and separated into: control group (Control; n=6), fed with untreated fruits; Deltamethrin group (DM; n = 6), fed with fruits treated with deltamethrin at a concentration of 1.00 mL/L plus adhesive spreader (0.015 g/L). After a period of chronic exposure (35 days), the redox status of the liver and kidney, histological changes in the liver, glucose concentration and energy reserves were analyzed. Exposure to commercial doses of deltamethrin induced oxidative stress and morphological changes in the liver, in addition to causing hypoglycemia and reducing energy reserves in bats. Considering that bats are naturally exposed to pesticides during foraging, the impact of this exposure can alter energy reserves and induce changes in the normal functioning of the liver, impairing the survival of these animals, and consequently the ecosystem services provided by them.

References

Aebi, H. (1984). [13] Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121-126). Academic press.

Agrawal, A. N. J. U., & Sharma, B. (2010). Pesticides induced oxidative stress in mammalian systems. Int J Biol Med Res, 1(3), 90-104.

Amaral, T. S., Carvalho, T. F., Silva, M. C., Barros, M. S., Picanço, M. C., Neves, C. A., & Freitas, M. B. (2012). Short-term effects of a spinosyn's family insecticide on energy metabolism and liver morphology in frugivorous bats Artibeus lituratus (Olfers, 1818). Brazilian Journal of Biology, 72, 299-304.

Amin, K. A., & Hashem, K. S. (2012). Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC veterinary research, 8(1), 1-8.

Barbosa, K. B. F., Costa, N. M. B., Alfenas, R. D. C. G., De Paula, S. O., Minim, V. P. R., & Bressan, J. (2010). Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de nutrição, 23, 629-643.

Ben-Hamo, M., Muñoz-Garcia, A., & Pinshow, B. (2012). Respostas fisiológicas ao jejum em morcegos. Em Fisiologia comparativa do jejum, fome e limitação alimentar (pp. 257-275). Springer, Berlim, Heidelberg.

Bennett, B. S., & Thies, M. L. (2007). Organochlorine pesticide residues in guano of Brazilian free-tailed bats, Tadarida brasiliensis Saint-Hilaire, from East Texas. Bulletin of environmental contamination and toxicology, 78(3), 191-194.

Bianconi, G. V., Mikich, S. B., Teixeira, S. D., & Maia, B. H. L. (2007). Attraction of fruit‐eating bats with essential oils of fruits: A potential tool for forest restoration. Biotropica, 39(1), 136-140.

Brinati, A., Oliveira, J. M., Oliveira, V. S., Barros, M. S., Carvalho, B. M., Oliveira, L. S., ... & Freitas, M. B. (2016). Low, chronic exposure to endosulfan induces bioaccumulation and decreased carcass total fatty acids in neotropical fruit bats. Bulletin of Environmental Contamination and Toxicology, 97(5), 626-631.

Buege, J. A., & Aust, S. D. (1978). [30] Microsomal lipid peroxidation. In Methods in enzymology (Vol. 52, pp. 302-310). Academic press.

Chargui, I., Grissa, I., Bensassi, F., Hrira, M. Y., Haouem, S., Haouas, Z., & Bencheikh, H. (2012). Oxidative stress, biochemical and histopathological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): a molecular assessment. Biomedical and Environmental Sciences, 25(6), 672-683.

Chauhan, L. K., Kumar, M., Paul, B. N., Goel, S. K., & Gupta, S. K. (2007). Cytogenetic effects of commercial formulations of deltamethrin and/or isoproturon on human peripheral lymphocytes and mouse bone marrow cells. Environmental and Molecular Mutagenesis, 48(8), 636-643.

Chionh, Y. T., Cui, J., Koh, J., Mendenhall, I. H., Ng, J. H., Low, D., ... & Wang, L. F. (2019). High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress and Chaperones, 24(4), 835-849.

Cummins, I., Dixon, D. P., Freitag-Pohl, S., Skipsey, M., & Edwards, R. (2011). Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug metabolism reviews, 43(2), 266-280.

Cutler, R. G. (1985). Peroxide-producing potential of tissues: inverse correlation with longevity of mammalian species. Proceedings of the National Academy of Sciences, 82(14), 4798-4802.

Davies, T. G. E., Field, L. M., & Williamson, M. S. (2012). The re‐emergence of the bed bug as a nuisance pest: implications of resistance to the pyrethroid insecticides. Medical and veterinary entomology, 26(3), 241-254.

de Oliveira, J. M., de Almeida Lima, G. D., Destro, A. L. F., Condessa, S., Zuanon, J. A. S., Freitas, M. B., & de Oliveira, L. L. (2021). Short-term intake of deltamethrin-contaminated fruit, even at low concentrations, induces testicular damage in fruit-eating bats (Artibeus lituratus). Chemosphere, 278, 130423.

de Souza, M. B., de Souza Santos, L. R., Borges, R. E., Nunes, H. F., Vieira, T. B., Pacheco, S. M., & de Melo e Silva, D. (2020). Current status of ecotoxicological studies of bats in Brazil. Bulletin of environmental contamination and toxicology, 104(4), 393-399.

de Souza, T. C., da Silva, S. L. R., Marcon, J. L., & Waichman, A. V. (2020). Acute toxicity of deltamethrin to Amazonian freshwater fish. Toxicology and Environmental Health Sciences, 12(2), 149-155.

Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual review of entomology, 52(1), 81-106.

Dieterich, S., Bieligk, U., Beulich, K., Hasenfuss, G., & Prestle, J. (2000). Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation, 101(1), 33-39.

Dietz, S., De Roman, M., Lauck-Birkel, S., Maus, C., Neumann, P., & Fischer, R. (2009). Ecotoxicological and environmental profile of the insecticide delta methrin. In Pyrethroid Scientific Forum 2009 (p. 211).

Dubey, N., Khan, A. M., & Raina, R. (2013). Sub-acute deltamethrin and fluoride toxicity induced hepatic oxidative stress and biochemical alterations in rats. Bulletin of environmental contamination and toxicology, 91(3), 334-338.

Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, 226(1), 497-509.

Freitas, M. B., Passos, C. B., Vasconcelos, R. B., & Pinheiro, E. C. (2005). Effects of short-term fasting on energy reserves of vampire bats (Desmodus rotundus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140(1), 59-62.

Freitas, M. B., Welker, A. F., & Pinheiro, E. C. (2006). Efeitos do jejum e da variação sazonal sobre as reservas lipídicas de morcegos hematófagos (Chiroptera: Phyllostomidae). Brazilian Journal of Biology, 66, 1051-1055.

Freitas, R. M., Linhares, B. S., Oliveira, J. M., Leite, J. P. V., da Matta, S. L. P., Gonçalves, R. V., & Freitas, M. B. (2021). Tebuconazole-induced toxicity and the protective effect of Ficus carica extract in Neotropical fruit-eating bats. Chemosphere, 275, 129985.

Frisard, M., & Ravussin, E. (2006). Energy metabolism and oxidative stress. endocrine, 29(1), 27-32.

Froese, J. M., Smits, J. E., Forsyth, D. J., & Wickstrom, M. L. (2009). Toxicity and immune system effects of dietary deltamethrin exposure in tiger salamanders (Ambystoma tigrinum). Journal of Toxicology and Environmental Health, Part A, 72(8), 518-526.

Guardiola, F. A., Gónzalez-Párraga, P., Meseguer, J., Cuesta, A., & Esteban, M. A. (2014). Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 36(1), 120-129.

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22), 7130-7139.

Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2005). Glutathione transferases. Annual review of pharmacology and toxicology, 45(1), 51-88.

Hermes-Lima, M. (2004). Oxygen in biology and biochemistry: role of free radicals. Functional metabolism: regulation and adaptation, 1, 319-66.

Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R., & Racey, P. A. (2009). Carpe noctem: the importance of bats as bioindicators. Endangered species research, 8(1-2), 93-115.

Ku, H. H., Brunk, U. T., & Sohal, R. S. (1993). Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radical Biology and Medicine, 15(6), 621-627.

Li, M., Liu, X., & Feng, X. (2019). Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere, 219, 155-164.

Liao, C. H., He, X. J., Wang, Z. L., Barron, A. B., Zhang, B., Zeng, Z. J., & Wu, X. B. (2018). Short-term exposure to lambda-cyhalothrin negatively affects the survival and memory-related characteristics of worker bees Apis mellifera. Archives of environmental contamination and toxicology, 75(1), 59-65.

Limón-Pacheco, J., & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674(1-2), 137-147.

Lowry, O. H. (1951). Protein measurement with the Folin phenol reagent. J biol Chem, 193, 265-275.

Lu, Q., Sun, Y., Ares, I., Anadón, A., Martínez, M., Martínez-Larrañaga, M. R., ... & Martínez, M. A. (2019). Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental research, 170, 260-281.

Lushchak, V. I., & Storey, K. B. (2021). Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated. EXCLI journal, 20, 956.

Magalhães, J. P. D., Costa, J., & Church, G. M. (2007). An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62(2), 149-160.

Martins, M. P. V.; Torres, J. M.; Dos Anjos, E. A. C. (2014). Dieta de morcegos filostomídeos (Mammalia, Chiroptera, (Phyllostomidae) em fragmento urbano do Instituto São Vicente, Campo Grande, Mato Grosso do Sul. Papeis Avulsos de Zoologia, v. 54, n. 20, p. 665–670.

Melo, F. P., Rodriguez‐Herrera, B., Chazdon, R. L., Medellin, R. A., & Ceballos, G. G. (2009). Small tent‐roosting bats promote dispersal of large‐seeded plants in a Neotropical forest. Biotropica, 41(6), 737-743.

Munshi-South, J., & Wilkinson, G. S. (2010). Bats and birds: exceptional longevity despite high metabolic rates. Ageing research reviews, 9(1), 12-19.

Nunes, H., Rocha, F. L., & Cordeiro-Estrela, P. (2017). Bats in urban areas of Brazil: roosts, food resources and parasites in disturbed environments. Urban ecosystems, 20(4), 953-969.

Oliveira, J. M., Condessa, S. S., Destro, A. L. F., Lima, G. D. A., Cupertino, M. C., Cardoso, S. A., Freitas, M. B., & Oliveira, L. L. (2022). Morphophysiological alterations in fruit-eating bats after oral exposure to deltamethrin. International Journal of Experimental Pathology, 00:1–12.

Oliveira, J. M., Destro, A. L. F., Freitas, M. B., & Oliveira, L. L. (2020). How do pesticides affect bats?–A brief review of recent publications. Brazilian Journal of Biology, 81, 499-507.

Oliveira, J. M., Losano, N. F., Condessa, S. S., de Freitas, R. M. P., Cardoso, S. A., Freitas, M. B., & de Oliveira, L. L. (2018). Exposure to deltamethrin induces oxidative stress and decreases of energy reserve in tissues of the Neotropical fruit-eating bat Artibeus lituratus. Ecotoxicology and environmental safety, 148, 684-692.

Oliveira, J. M., Brinati, A., Miranda, L. D. L., Morais, D. B., Zanuncio, J. C., Gonçalves, R. V., ... & Freitas, M. B. (2017). Exposure to the insecticide endosulfan induces liver morphology alterations and oxidative stress in fruit‐eating bats (Artibeus lituratus). International Journal of Experimental Pathology, 98(1), 17-25.

Romero, A., Ares, I., Ramos, E., Castellano, V., Martinez, M., Martínez-Larrañaga, M. R., ... & Martínez, M. A. (2015). Evidence for dose-additive effects of a type II pyrethroid mixture. In vitro assessment. Environmental Research, 138, 58-66.

Royauté, R., Buddle, C. M., & Vincent, C. (2015). Under the influence: sublethal exposure to an insecticide affects personality expression in a jumping spider. Functional Ecology, 29(7), 962-970.

Santos, M. A., Rodrigues, M. V., Áreas, M. A., & Reyes, F. G. (2011). Deltamethrin and Permethrin in the liver and heart of Wistar rats submitted to oral subchronic exposure. Journal of the Brazilian Chemical Society, 22, 891-896.

Siwicki, A. K., Terech‐Majewska, E., Grudniewska, J., Malaczewska, J., Kazun, K., & Lepa, A. (2010). Influence of deltamethrin on nonspecific cellular and humoral defense mechanisms in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry: An International Journal, 29(3), 489-491.

Sjörgren, B., Noerdenskjold, T., Holmgeen, H. And Mollerstrom, J., 1938. Beitrag zur kenntnis der leberrhythmik (glykogen, phosphor und calcium in der kaninchenleber). Pflügers Archiv, p. 240-247.

Stahlschmidt, P., Hahn, M., & Brühl, C. A. (2017). Nocturnal risks-high bat activity in the agricultural landscape indicates potential pesticide exposure. Frontiers in Environmental Science, 5, 62.

Tanikawa, K., & Torimura, T. (2006). Studies on oxidative stress in liver diseases: important future trends in liver research. Medical molecular morphology, 39(1), 22-27.

Torquetti, C. G., Guimarães, A. T. B., & Soto-Blanco, B. (2021). Exposure to pesticides in bats. Science of the Total Environment, 755, 142509.

Vizotto, L. D., & Taddei, V. A. (1973). Chave para determinação de quirópteros brasileiros.

Yang, C., Lim, W., & Song, G. (2020). Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 234, 108758.

Yildirim, M. Z., Benlı, A. Ç. K., Selvı, M., Özkul, A., Erkoç, F., & Koçak, O. (2006). Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environmental Toxicology: An International Journal, 21(6), 614-620.

Published

02/08/2023