Fire and herpetofauna in the Pantanal: observations during and post-fire events
DOI:
https://doi.org/10.37002/biodiversidadebrasileira.v14i4.2556Keywords:
wetlands, amphibians, reptiles, environmental emergencies, monitoringAbstract
The Pantanal has faced different threats over the years, which have altered its landscapes and harmed the flood pulse. Since 2020, one of the foremost concerns regarding preserving the biome’s biodiversity has been the change in the fire regime and the impacts of extensive fires. The increase in the frequency and intensity of fires is one of the threats identified by science as a cause of the global decline in amphibian and reptile populations. The main objective of this study was to describe the patterns observed in the composition, distribution, and natural history of reptile and amphibian species sampled during and post-fire incidents that have been affecting the Pantanal since 2020. Additionally, we point out the difficulties in estimating the impact of fire on the herpetofauna of the Pantanal and suggest improvements to the methodology used. Data were obtained during six expeditions carried out between 2020 and 2023, at different hydrological periods (dry and low water) and in different sampling circumstances: emergency and monitoring. Emergency refers to the records made during fire events and consists of counting dead animals, while monitoring, applied during free-fire periods, consists of passive and active sampling of live animals. For each species recorded during sampling, we sought complementary information in the literature regarding extinction risk category, habitat, and habits. Considering all the expeditions and the different methodologies, we documented 1708 records of 45 species in the municipalities of Barão de Melgaço and Poconé. The richness and abundance of amphibians and reptiles responded differently in emergency and monitoring campaigns. Large-bodied amphibians with terrestrial/semifossorial habits, as well as aquatic and semiaquatic snakes, were the groups with the highest number of deaths recorded after the fire. During monitoring, however, sightings of aquatic snakes were very low. In this context, we highlight the importance of long-term monitoring studies, with methodologies appropriate to the hydrological conditions, taxonomic group, and fire occurrence. Helicops boitata, a species of water snake endemic to the Pantanal, was recorded only during the campaign to count dead animals in the 2020 fires carried out during the dry season. The recurrence of large fires in the region may pose a serious threat to this and other species with similar habits. Continuous monitoring of areas sampled during fires is extremely important to identify fire-resilient or intolerant species and is fundamental for the development of appropriate conservation measures for each taxonomic group.
References
1. Junk WJ. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci. 2013; 75: 113-31.
2. Mapbiomas Project. Collection 8 of the Annual Land Cover and Land Use Maps of Brazil (1985-2022) [Internet]. 2023 [citado 7 de março de 2024]. Recuperado de: https://brasil.mapbiomas.org
3. Ely P, Fantin-Cruz I, Tritico HM, Girard P, Kaplan D. Dam-induced hydrologic alterations in the rivers feeding the Pantanal. Front Environ Sci. 2020; 8: 1-17.
4. Peluso LM, Mateus L, Penha J, Bailly D, Cassemiro F, Suárez Y, et al. Climate change negative effects on the Neotropical fishery resources may be exacerbated by hydroelectric dams. Sci Total Environ. 2022; 828: 154485.
5. Duane A, Castellnou M, Brotons L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim Change. 2021; 165: 43.
6. Calim Costa M, Marengo JA, Alves LM, Cunha AP. Multiscale analysis of drought, heatwaves, and compound events in the Brazilian Pantanal in 2019-2021. Theor Appl Climatol. 2023; 155: 661-77.
7. Smaniotto NP, Moreira LFB, Semedo TBF, Carvalho F, Quintela FM, Nunes A V et al. When drought matters: Changes within and outside Protected Areas from the Pantanal ecoregion. Wetlands. 2024; 44: 45.
8. Hantson S, Andela N, Goulden ML, Randerson JT. Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nat Commun. 2022; 13: 1-8.
9. Magalhães Neto N, Evangelista H. Human activity behind the unprecedented 2020 wildfire in Brazilian wetlands (Pantanal). Front Environ Sci. 2022; 10: 888578.
10. Moreira LFB, Smaniotto NP, Ceron K, Santana DJ, Ferreira VL, Strüssmann C et al. Ashes still smoking: the influence of fire and land cover on Pantanal ecoregion amphibians. Amphibia-Reptilia. 2023; 45: 11-20.
11. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA et al. Fire in the earth system. Science (80- ). 2009; 324: 481-484.
12. Tingley R, Macdonald SL, Mitchell NJ, Woinarski JCZ, Meiri S, Bowles P et al. Geographic and taxonomic patterns of extinction risk in Australian squamates. Biol Conserv. 2019; 238: 108203.
13. Kramer A, Jones GM, Whitmore SA, Keane JJ, Atuo FA, Dotters BP et al. California spotted owl habitat selection in a fire-managed landscape suggests conservation benefit of restoring historical fire regimes. For Ecol Manage. 2021; 479: 118576.
14. Libonati R, DaCamara CC, Peres LF, Sander de Carvalho LA, Garcia LC. Rescue Brazil’s burning Pantanal wetlands. Nature. 2020; 588: 217-9.
15. Garcia LC, Szabo JK, Roque F de O, Pereira A de MM, da Cunha CN, Damasceno-Júnior GA et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. J Environ Manage. 2021; 293: 112870.
16. Tomas WM, Berlinck CN, Chiaravalloti RM, Faggioni GP, Strüssmann C, Libonati R et al. Distance sampling surveys reveal 17 million vertebrates directly killed by the 2020’s wildfires in the Pantanal, Brazil. Sci Rep. 2021; 11: 1-8.
17. Berlinck CN, Lima LHA, Pereira AMM, Carvalho EAR, Paula RC, Thomas WM et al. The pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Brazilian J Biol. 2022; 82: 2-3.
18. dos Anjos AG, Solé M, Benchimol M. Fire effects on anurans: What we know so far? For Ecol Manage. 2021; 495: 119338.
19. Santos JL, Sitters H, Keith DA, Geary WL, Tingley R, Kelly LT. A demographic framework for understanding fire-driven reptile declines in the “land of the lizards”. Glob Ecol Biogeogr. 2022; 31: 2105-19.
20. Drummond L de O, Moura FR, Pires MRS. Impact of fire on anurans of rupestrian grasslands (Campos rupestres): A case study in the serra do espinhaço, Brazil. Salamandra. 2018; 54: 1-10.
21. Arruda F V., Izzo TJ, Teresa FB, Camarota F. Different burning intensities affect cavity utilization patterns by arboreal ants in a tropical savanna canopy. Ecol Indic. 2020; 116: 106493.
22. Garcês A, Pires I. The hell of wildfires: The impact on wildlife and its conservation and the role of the veterinarian. Conservation. 2023; 3: 96-108.
23. Böhm M, Collen B, Baillie JEM, Bowles P, Chanson J, Cox N et al. The conservation status of the world’s reptiles. Biol Conserv. 2013; 157: 372-85.
24. Geyle HM, Tingley R, Amey AP, Cogger H, Couper PJ, Cowan M, et al. Reptiles on the brink: identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pacific Conserv Biol. 2021;27:3.
25. Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E et al. Fire and biodiversity in the Anthropocene. Science (80- ). 2020; 370: 1-17.
26. Russell KR, Lear DH Van, Guynn DC. Prescribed fire effects on herpetofauna: review and management implications. Wildl Soc Bull. 1999; 27: 374-84.
27. Tomas WM, Roque F de O, Morato RG, Medici PE, Chiaravalloti RM, Tortato FR et al. Sustainability Agenda for the Pantanal Wetland: Perspectives on a Collaborative Interface for Science, Policy, and Decision-Making. Trop Conserv Sci. 2019; 12: 1-30.
28. Assine ML, Merino ER, Do Nascimento Pupim F, de Azevedo Macedo H, dos Santos MGM. The Quaternary alluvial systems tract of the Pantanal Basin. Brazilian J Geol. 2015; 45: 475-89.
29. Hamilton SK, Sippel SJ, Melack JM. Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch fur Hydrobiol. 1996; 137: 1-23.
30. Strüssmann C, Prado CPA, Ferreira VL, Ribeiro RAK. Diversity, ecology, management and conservation of amphibians and reptiles of the Brazilian Pantanal: a review. In: Junk WJ, Da Silva CJ, Nunes da Cunha C, Wantzen KM, organizadores. Pantanal Ecol Biodivers Sustain Manag a large Neotrop Seas Wetl. Sofia, Moscow: Pensoft Publishers; 2011. p. 127-41.
31. da Cunha CN, Junk WJ. Composição florística de capões e cordilheiras: localização das espécies lenhosas quanto ao gradiente de inundação no Pantanal de Poconé, MT – Brasil. In: Dantas M, Catto JB, Resende EK de (orgs.). An do II Simpósio sobre Recur Nat e Sócio-economicos do Pantanal Manejo e Conserv. Corumbá - MS: EMBRAPA; 1999. p. 387-405.
32. Junk WJ, Bayley PB, Sparks RE. The flood pulse concept in River-Floodplain systems. In: Dodge DP (org.). Proc Int Large River Symp. Canadian Special Publication of Fisheries and Aquatic Sciences 106; 1989. p. 110-27.
33. da Silva J dos SV, de Moura Abdon M. Delimitação do Pantanal Brasileiro e suas sub-regiões. Pesqui Agropecu Bras. 1998; 33: 1703-1711.
34. Campos Filho LVS. Tradição e Ruptura: Cultura e ambientes pantaneiros. Cuiabá, MT: Entrelinhas; 2002.
35. Costa CP da, Cunha CN da, Costa SC. Caracterização da flora e estrutura do estrato arbustivo-arbóreo de um cerrado no Pantanal de Poconé/MT. Biota Neotrop. 2010; 10: 61-73.
36. Cordeiro JLP. Estrutura e heterogeneidade da paisagem de uma unidade de conservação no nordeste do pantanal (RPPN SESC Pantanal), Mato Grosso, Brasil: efeitos sobre a distribuição e densidade de antas (Tapirus terrestris) e de cervos-do-pantanal (Blastocerus dichotomus). Universidade Federal do Rio Grande do Sul; 2004.
37. INPE. Banco de dados de queimadas do INPE [Internet]. Programa Queimadas do INPE. 2024 [citado 7 de março de 2024]. Recuperado de: https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/
38. Burnham KP, Anderson DR, Laake JL. Estimation of density from line transect sampling of biological populations. J R Stat Soc Ser A. 1981; 144: 369.
39. Martins M, Oliveira ME. Natural history of snakes in forest of the Manaus region, Central Amazonia, Brazil. Herpetol Nat Hist. 1998; 6: 78-150.
40. Segalla M V, Berneck B, Canedo C, Caramaschi U, Gonçalves Cruz CA, Garcia PC et al. List of Brazilian Amphibians. Herpetol Bras. 2021; 10: 121.
41. Guedes TB, Entiauspe-Neto OM, Costa HC. Lista de répteis do Brasil: atualização de 2022. Herpetol Bras. 2023; 12: 56-161.
42. ICMBio. Sistema de Avaliação do Risco de Extinção da Biodiversidade – SALVE [Internet]. ICMBio. 2024 [citado 7 de março de 2024]. Recuperado de: https://salve.icmbio.gov.br/
43. Legendre P, Legendre L. Numerical ecology. 3rd ed. Amsterdam: Elsevier; 2012.
44. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2023. Recuperado de: https://www.r-project.org/
45. Pebesma E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018; 10: 439.
46. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R et al. Welcome to the Tidyverse. J Open Source Softw. 2019; 4: 1686.
47. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. New York: Springer-Verlag; 2016. Recuperado de: https://ggplot2.tidyverse.org
48. Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P et al. vegan: community ecology package [Internet]. R package; 2022. Recuperado de: https://cran.r-project.org/package=vegan
49. Hijmans R. geosphere: spherical trigonometry [Internet]. R package; 2022. Recuperado de: https://cran.r-project.org/package=geosphere
50. Strüssmann C, Ribeiro RAK, Ferreira VL, Béda A de F. Herpetofauna do Pantanal brasileiro. In: Nascimento L, Oliveira M, organizadores. Herpetol no Bras II. Belo Horizonte: Sociedade Brasileira de Herpetologia; 2007. p. 66-84.
51. Ferreira VL, Terra J de S, Piatti L, Delatorre M, Strüssmann C, Béda AF et al. Répteis do Mato Grosso do Sul, Brasil. Iheringia – Ser Zool. 2017; 107: 1-13.
52. Pansonato A, Mott T, Strüssmann C. Anuran amphibians’ diversity in a northwestern area of the Brazilian Pantanal. Biota Neotrop. 2011; 11: 77-86.
53. Silva-Alves VD, Neves MO, Seba M de FR, Dos Santos Filho M, da Silva DJ. Amphibian Diversity: Where everything starts to flood, Cáceres Municipality, North Pantanal, Central-West Brazil. Pap Avulsos Zool. 2023; 63: 0-4.
54. Souza FL, Martins FI, Raizer J. Habitat heterogeneity and anuran community of an agroecosystem in the Pantanal of Brazil. Phyllomedusa. 2014; 13: 41-50.
55. Uetanabaro M, Prado CP de A, Rodrigues D de J, Gordo M, Campos Z. Guia de campo dos anuros do Pantanal e planaltos de entorno. 1a ed. Ed. UFMS. Campo Grande/MS - Cuiabá/MT: Editora UFMS - Editora UFMT; 2008.
56. Magalhães FM, Lyra ML, Carvalho TR, Baldo D, Bruschetti F, Burella P et al. Taxonomic review of South American Butter frogs: Phylogeny, biogeographic patterns, and species delimitation in the Leptodactylus latrans species group (Anura: Leptodactylidae). Herpetol Monogr. 2020; 34: 1-48.
57. Vaz-Silva W, Maciel NM, Nomura F, Morais AR de, Batista VG, Santos DL et al. Guia de identificação das espécies de anfíbios (Anura e Gymnophiona) do estado de Goiás e do Distrito Federal, Brasil Central. Zoologia: Curitiba: Sociedade Brasileira de Zoologia; 2020.
58. Prado CP d. A, Uetanabaro M, Haddad CFB. Breeding activity patterns, reproductive modes, and habitat use by anurans (Amphibia) in a seasonal environment in the Pantanal, Brazil. Amphibia-Reptilia. 2005; 26: 211-21.
59. Strüssmann C, Sazima I. The snake assemblage of the Pantanal at Pocone, Western Brazil: Faunal composition and ecological summary. Stud Neotrop Fauna Environ. 1993; 28: 157-68.
60. Oda FH, Ávila RW, Drummond LDO, Santos DL, Gambale PG, Guerra V, et al. Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado. Biologia (Bratisl). 2017; 72: 1194-210.
61. Keyser PD, Sausville DJ, Ford WM, Schwab DJ, Brose, Patrick H. Prescribed fire impacts to amphibians and reptiles in shelterwood-harvested oak-dominated forests. Va J Sci. 2004 55: 159-68.
62. Batista EKL, Figueira JEC, Solar RRC, de Azevedo CS, Beirão MV, Berlinck CN et al. In case of fire, escape or die: A trait-based approach for identifying animal species threatened by fire. Fire. 2023; 6: 1-21.
63. Lovich JE, Quillman M, Zitt B, Schroeder A, Green DE, Yackulic C et al. The effects of drought and fire in the extirpation of an abundant semi-aquatic turtle from a lacustrine environment in the southwestern USA. Knowl Manag Aquat Ecosyst. 2017; 418: 18.
64. Jordaan PR, Steyl JCA, Hanekom CC, Combrink X. Fire-associated reptile mortality in Tembe Elephant Park, South Africa. Fire Ecol. 2020; 16: 4-9.
65. Uetanabaro M, Souza FL, Landgref-Filho P, Beda AF, Brandão RA. Anfíbios e répteis do Parque Nacional da Serra da Bodoquena, Mato Grosso do Sul, Brasil. Biota Neotrop. 2007; 7: 279-89.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Os autores mantêm os direitos autorais de seus artigos sem restrições, concedendo ao editor direitos de publicação não exclusivos.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Os artigos estão licenciados sob uma licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0). O acesso é livre e gratuito para download e leitura, ou seja, é permitido copiar e redistribuir o material em qualquer mídia ou formato.